May - 2015 Final Exam Time: 1 Hour, Mar Quality matter: This exam. measures ILOs a1 & a4, a5, a8, b2 & b3, ,b4 & b5.

2nd Year Architect, Eng. Course: Air Conditioning Part Time: 1 Hour, Marks: 30

conditioned space

cond.

space

conditioned space

15m

Question no. 1 (5 points).

Try the following questions.

Psychrometric chart with student is allowed

D.C. d. C.H.

Define the following:

Coefficient of performance, Relative humidity – Latent heat – Sensible heat factor – Dew point temperature

Question no. 2 (4 points).

A 8 kg/s of an air stream at 10° C and 50% RH is mixed with 2 kg/s of an air stream at 35°C DBT and 0.014 kg w.v/kg d.a humidity ratio. find the DPT of the mixture.

Duestion no. 3 (6 points).

A 2 kg/s of air stream at 8 °C DBT and 5 °C WBT is heated sensibly up to 24 °C DBT, then a 20 g w.v./s of moisture is added in a humidifying process. Calculate the sensible load and ensible heat factor.

Question no 4 (6 points).

- A 60 cmm of moist air at a 32 °C DBT and 22 °C WBT enters a cooling and a dehumidifying coil. If it is desired that the air leaves the coil at 18 °C DBT and 16 °C WBT, determine the following:
 - a) the effective surface temperature of the coil
 - b) coil bypass factor
 - c) the coil cooling capacity

Question no. 5 (10 points).

The space shown is to be conditioned has the following:

One storey space of height 4 m, west glass area 12 m²

door 2.0mx 1.5 m

At the hour of calculation you have:

heat transmission through glass =45 W/m²

solar heat gain through glass = 460 W/m^2

CLF for solar heat gain 0.7

U for west wall 3.5 W/m². °C and for roof

of 2.5 W/m². °C.

CLTD_{corr} for west wall 13° C, and for roof 17° C.

Outside design conditions: 40 C DBT and 27° C WBT, Inside design conditions 25 °C and 50 % R.H., lighting 25 W/m 2 , CLF = 0.7, Occupancy 25 persons, sensible heat gain per person 75 W and latent heat gain per person 65 W, CLF = 0.6

12m

Ventilation air 12 m³/hr per person and infiltration air 6 m³/min.

Assume any missing data, calculate space cooling load.

Best wishes, Examiners: Prof. Ibrahim .M. Ismail + "The committee"

Noise Oriterion, NO

كلية الأداب

الحادة: اللغة العربية

الزمن: ساعتان

قسم : اللغة العربية

الفرقة: الأولى - كلية الفندسة (جميع الشعب)

امتحان الفصل الدراسي الأول يناير ٢٠١٥م

أجب عن الأسئلة الآتية :

(۱۰ درجات)

"السؤال الأول :

أ- " اللغة ألفاظ يعبر بها كل قوم عن مقاصدهم " اشرح ذلك .

ب- مثل لما يأتى : (الاسم - الفعل - الحرف - همزة قطع - ألف الوصل -همزة متوسطة - همزة متطرفة - بعض علامات الترقيم).

(10 درجة)

والغوانى يغرهن الثناء

كثرت في غرامها الأسماء

لم يك بينى وبينها أشياء

فكالم فموعد فلقاء

*الدمؤال الثاني :

- قال الشاعر:

١- خدعوها بقولهم حسناء

٢- أتراها تناست اسمى لما

٣- إن رأتني تميل عني كأن

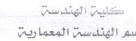
٤ - نظرة فابتسامة فسلام

أ- ماذا تعرف عن الشاعر ؟

ب- اشرح الأبيات السابقة شرحاً أدبياً.

ج- ضع عنواناً لها ، وما الغرض الشعري منها .

د- استخرج من البيت الثالث صورة خيالية .


(10 درجة)

*السؤال الثالث :

أ- درست سورتى : (الفيل - والكوثر) ما الهدف منهما ؟ وما نوع البلاغة في قوله تعالى: (كعصف مأكول).

ب- مثل لكل من : (الإعلال - الإدغام - الإبدال) .

ج- ماذا تعرف عن علوم اللغة العربية ؟

قسم الهندسة المعمارية

امتحان نهايت الفصل الدراسي الثاني

T-10/T-12

النهاية العظمي: ٨٠ درجة مقرر التصميم المعماري (٣) الزمن المحدد: ٦ ساعات ڪود: A225

الفرقة الثانية - لانعم ١٠٠٤

التاريخ: السبت ١٩/٥/٥/ ٢٠

• الامتحان يقيس مهارة انتاج تصميمات معماريــ تأخــ في الاعتبـار اتسـاق النــواحي الوظيفيــ والتش والانشائية وملاءمتها مع المحددات البيئية والمناخية للموقع.

• الامتحان مكون من صفحتين.

• يرجى الالتزام بالنظافة والدقة في الرسم.

• يكون الحل النهائي في اللوحة البيضاء وليس في الشفافات.

• على الطالب فرض المعلومة التي يجدها ضرورية للتصميم إذا لزم الأمر.

ملاحظات

مامت

يُراد إقامة "معهد عالي للهندسة" في أحد المواقع بمدينة أسيوط الجديدة على مساحة تبلغ ثمانية تعالية مميز وبنسبة بنائية لا تتجاوز ٤٠٪ من مساحة الأرض، ويراعي في التصميم أن يشتمل على العناصر التالية:

أولا: الفراغات التعليميت:

- عدد ١٥ فصل دراسي يسع كل منها ٥٠ طالب.
 - عدد ٤ صالمة رسم تسع كل منها ٥٠ طالب.
 - عدد ٢ مدرج يسع كل منها ١٠٠ طالب.
- عدد ۱ قاعم مؤتمرات ومحاضرات تسع ۲۰۰ شخص۔
- عدد ٢ معمل حاسب آلى مجهز لعدد ٥٠ طالب (ملحق به غرفت لأمين المعمل)
 - مكتية لعدد ٥٠ مستخدم.
 - قاعة سيمينارتسع ٥٠ طالب

ثانيا: مبنى الورش:

- مبنى للورش بمساحة حوالي ٦٠٠ م٢، لها مدخل خاص للتخديم متصل بأحد الشوارع.
- غرف تغيير ملابس للعمال (عدد ١٠ كبائن + دواليب حفظ) وأدشاش (عدد ١٠)، ودورات مياه (عدد ٥).
 - مخازن بمسطح اجمالي حوالي ٢٠٠ م١.

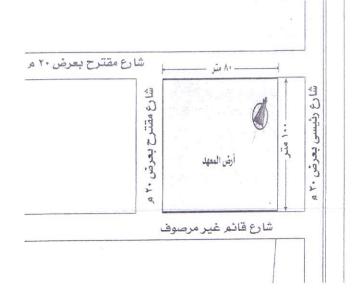
ثالثا: الفراغات التكميلية:

- الإدارة، وتشمل:
- مكتب عميد المعهد بمساحة ٥٠ متر مربع.
- مكتب رئيس مجلس ادارة المعهد بمساحة ٥٠ متر مربع.
 - غرفت سكرتارية بمساحة ٢٠ متر مربع.
 - غرفة اجتماعات بمساحة ٥٠ متر مربع.
 - غرفت وكيل المعهد بمساحة ٢٠ متر مربع.
 - غرف إدارية بمجموع مساحات ٢٠٠ متر مربع.
 - عيادة طبية ملحق بها غرفة للعزل بمساحة مناسبة.
 - قاعم رصد درجات بمساحم ۲۰ متر مربع.
- عدد ٨ مكاتب أعضاء هيئة التدريس بمساحة ٣٠ متر مربع لكل مكتب.
- عدد ٢ مكتب لمعاوني هيئة التدريس بمساحة ٢٠ متر مربع لكل مكتب

رابعا: الفراغات الخدمين:

- كافتريا بمساحة ١٥٠ متر مربع ملحق بها أوفيس للتخديم عليها.
 - مصلى للطلاب مع توفير مكان للوضوء.
- دورات مياه للطلاب، ودورات مياه لاعضاء هيئة التدريس والإدارة.
- مجموعة مخازن بمساحات متعددة بمجموع مساحة ٢٠٠ متر مربع.

خامسا: الفراغات المفتوحة:


- فراغ مظلل بمساحة مناسبة ومناطق انتظار سيارات.
 - ملعب خماسی بأبعاد ١٥×٢٥٨م.

من فضلك اقلب الورقي

المسطحات والمعايير اللازمة لكل عنصر طبقا للاشتراطات

صالة الرسع ع	قاعة المؤتمرات	معمل التحاسب الألي	المكتبت ومعمل	الفصل والمدرج	متوسط نصيب
السيميتان			الحاسب الألي		الطالب من المساحة
T,s Y, + +	۱۰۰۰ م۲	١،٧٥ هر٢	١٠٧٥ هر٢	۱٫۲ – ۱٫۶ هر۲	

يراعى توفير ١ دورة مياه لكل ٢٥ – ٣٠ طالب ، دورة مياه لكل ٢٠ عضو هيئة تدريس لا يقل عرض الطرقات في الفراغات التعليمية عن ١٠٨ ه تزيد إلى ٣ ه في حالة التخديم على الناحيتين الحد الادنى لعدد السلالم التي تخدم أي مبنى هو سلمين (عرض القلبة لا يقل عن ١٠٥ هـ) لا تزيد مسافة السير بين أبعد فراغ والسلم عن ١٨٠٠٠ هـ

كروكي الموقع العام

المطلوب توضيح فكرة الحل من خلال الرسومات التالين:

- المساقط الأفقية موضحاً عليها الطريقة الانشائية المساقط الأفقية موضحاً عليها الطريقة الانشائية
 - قطاع معماري رأسي (أو قطاعات) في مبنى المعهد وقاعم المؤتمرات.
 - الواجهة الرئيسية.
 - الموقع العام.
 - توضيح التكوين الكتلي للمشروع من خلال لقطم منظوريم.
 - أي رسومات أخري يراها الطالب لازمن لتوضيح فكرة الحل.

توزع در جات الامتحان كالآتي:

	يب الاستان تالاني.	5-6-
۲۵ درجات	تحقيق المعدلات والعلاقات الوظيفيت بشكل منطقي سليم	6
٥ درجات	مراعاة الاعتبارات البيئيت (التوجيه والاضاءة والتهويت).	•
۲۵ درچات	تحقيق التميز التشكيلي للكتلة والمسقط الافقي والواجهة، وحسن التعبيرعنها.	•
۲۰ درجات	حسن اختيار الطريقة الانشائية وصحة التعبير عنها في المساقط والواجهة والقطاع.	0
٥ د رجات	تصميم ورسم وإظهار الموقع العام	

دقت ونظافت الرسم وطريقت الإظهاريكون لها اعتبارعند التقييم

انتهت الأسئلت

دعواتنا بالتوفيق،، د. حنان رفعت محمد د. محمد رفاعه فهمى د. محمد محمد عزمي د. ريم وعظ أمجد +اللح

Livey 6.

مقیاس رسم ۲۰۰/۱

مقیاس رسم ۲۰۰/۱

مقیاس رسم ۱/۰۰۶

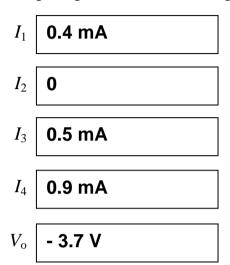
- yill refe

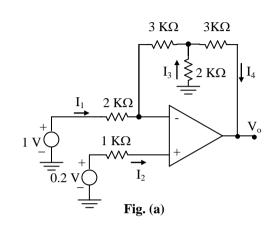
مارا المان

ASSIUT UNIVERSITY
FACULTY OF ENGINEERING
DEPT. OF ELECTRICAL ENG.

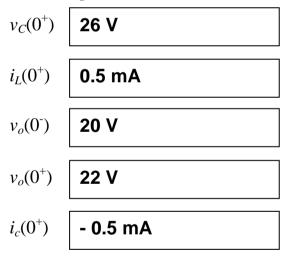
CIRCUIT THEORY

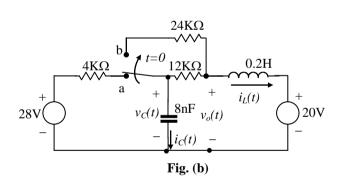
2<u>nd</u> Year Elect. جميع الطلبة (لانحة ٢٠٠٤، ١٩٩٧)

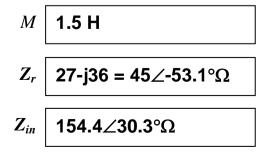

First Term Examination, 2009/2010

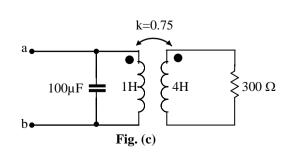

Time: 3 Hours

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الاجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.

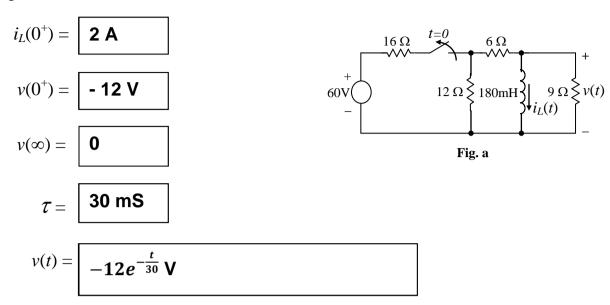

Question 1:


a) The op-amp in the circuit of Fig.a is ideal. Calculate the following: (10 Marks)




b) The switch in the circuit of Fig. (b) has been in position a for a long time. At t=0 it moves to position b. Calculate the following: (10 Marks)

c) The circuit of Fig. (c) operates at radian frequency $\omega = 100$ rad/sec. Find the mutual inductance M, the reflected impedance \mathbf{Z}_r and the input impedance at port a-b. (6 Marks)



إجابة نموذجية - Page 2 of 4

Question 2:

a) The switch in the circuit shown in Fig.a has been closed for a long time before it opens at t = 0. Find v(t) for $0 \le t \le \infty$. (10 Marks)

b) A balanced Y-connected load having an impedance of 18Ω /phase is connected in parallel with a balanced Δ -connected load having an impedance of 36Ω /phase. The parallel loads are fed from lines having an impedance of 2Ω /line. The magnitude of the line-to-neutral voltage at the Y-load is 720 V. Calculate the following:

(10 Marks)

The magnitude of the line current

100 A

The magnitude of the phase current in the Δ - load

 $20\sqrt{3} = 34.6 \text{ A}$

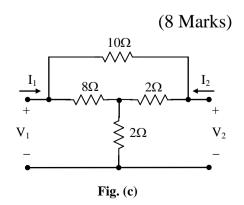
The magnitude of the phase current in the Y-load

40 A

The magnitude of the line voltage at the sending end

 $920\sqrt{3} = 1593.5 \text{ V}$

The total power dissipated in the loads


216 KW

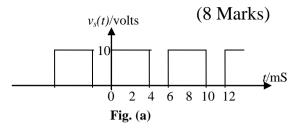
c)For the two-port of Fig. (c), Calculate:

$$z_{11} =$$
 6.8 Ω $a_{21} =$

 $h_{12} =$

 $y_{22} = \boxed{ 0.378 S}$

Question 3:

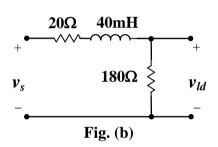

a) Find the first four Fourier coefficients of the voltage waveform of Fig.(a).

$$a_o = \boxed{\mathbf{6.7}}$$

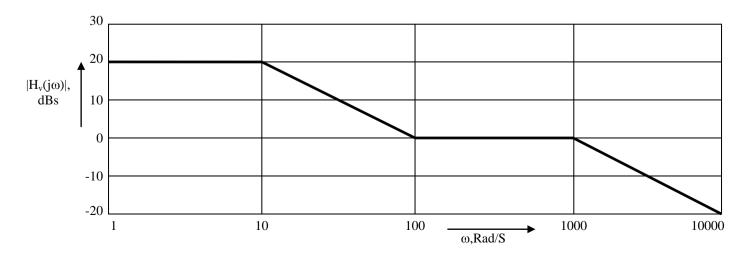
$$C_1 = \boxed{5.5 \angle 150^{\circ}}$$

$$C_2 = 2.76 \angle 30^{\circ}$$

$$C_3 = \boxed{\mathbf{0}}$$

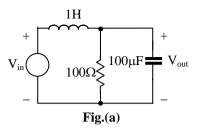

b) The voltage waveform of Fig.(a) is applied to the circuit of Fig. (b). Find the Fourier coefficients of the output voltage v_{ld} . (8 Marks)

$$V_{ldo} = \boxed{\mathbf{6} \ \mathbf{V}}$$


$$V_{ld1} = \begin{vmatrix} 4.85 \angle 138.2^{\circ} V \end{vmatrix}$$

$$V_{ld2} =$$
 2.29 \angle **7.3**° **V**

$$V_{ld3} = \boxed{\mathbf{0}}$$


c) Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000(s+100)}{(s+10)(s+1000)}$ (8 Marks)

إجابة نموذجية - Page 4 of 4

Question 4:

a) Find the voltage transfer function and its poles and zeros for the circuit of Fig.a. (10 Marks)

$$H_{v}(s) = \frac{10^4}{s^2 + 100s + 10^4}$$

Poles: -50 + j 86.6, -50 - j 86.6

Zeros: ∞, ∞

b) The switch in the circuit shown in Fig.b has been opened for a long time before it closes at t = 0. Find $v_c(t)$ for $t \ge 0$. (12 Marks)

$$V_C(s) = \frac{120}{s(s^2 + 4s + 3)}$$

$$= \frac{120}{s(s+1)(s+3)}$$

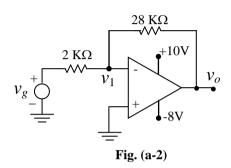
$$= \frac{40}{s} - \frac{60}{s+1} + \frac{20}{s+3}$$

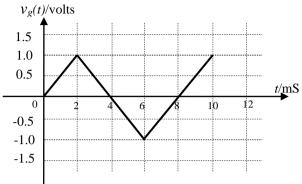
$$v_c(t) = [40 - 60e^{-t} + 20e^{-3t}]u(t) V$$

ASSIUT UNIVERSITY
FACULTY OF ENGINEERING
DEPT. OF ELECTRICAL ENG.

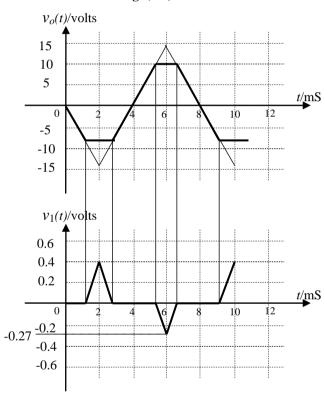
E222 CIRCUIT THEORY

2<u>nd</u> Year Elect. جميع الطلبة (لائحة ۲۰۰۶، ۱۹۹۷)

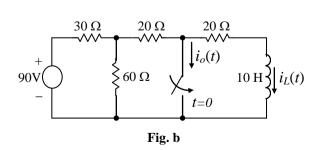

First Term Examination, 2010/2011


Time: 3 Hours

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.


Question 1:

a) The voltage waveform v_g shown in Fig.(a-1) is applied to the circuit of Fig.(a-2). Sketch v_o and v_1 versus t, assuming ideal op-amp. (10 Marks)



b) The switch in the circuit shown in Fig.b has been opened for a long time before it closes at t = 0. Find $i_o(t)$ for $0 \le t \le \infty$. (10 Marks)

$$i_L(0^+) = egin{array}{c} 1 \ A \ & i_O(0^+) = egin{array}{c} 0.5 \ A \ & i_O(\infty) = egin{array}{c} 1.5 \ A \ & & \\ &$$

Model Answer-Page 2 of 4

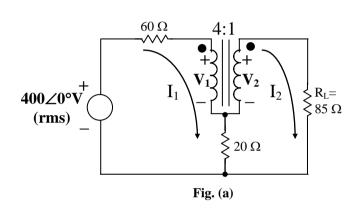
Question 2:

- a) i) Write the two mesh equations for the circuit of Fig.(a) and solve them to find I_I , I_2 , and the power dissipated in R_L . (10 Marks)
 - ii) Find the Thevenin equivalent circuit at the output port, hence find the value of R_L that consumes maximum power, and the value of this power. (6 Marks)

The first mesh equation $80 \ l_1 - 20 \ l_2 + V_1 = 400$

The second mesh equation

$$-20 I_1 + 105 I_2 - V_2 = 0$$


$$I_2 =$$
 1A

$$P_L = \begin{bmatrix} 85 \text{ W} \end{bmatrix}$$

$$R_{Th} = \left|$$
 15 Ω

$$V_{Th}=oxed{100~ extsf{V}}$$

$$P_{max} = \boxed{$$
 166.7 W

b) A three-phase Y-connected +ve sequence source having the phase voltage V_a =220 \angle 0°V. The source resistance is 2 Ω /Phase. The source supplies a balanced Δ -connected load having a load impedance of 36 \angle 30° Ω /Phase. The three lines connecting the source to the load have a resistance of 1 Ω /Line. Find the following: (10 Marks)

The magnitude of the line current | 1

15 A

The magnitude of the phase current in the Δ - load

8.66 A

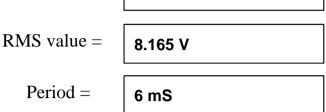
The magnitude of the line voltage at the sending end

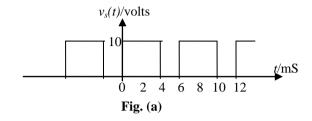
334.5 V

The magnitude of the line voltage at the load

312 V

The total active power dissipated in the load

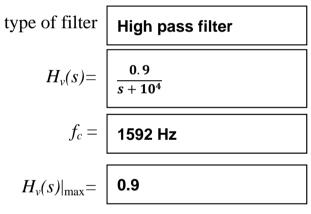

7015 W

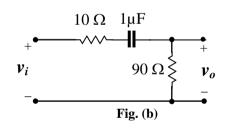

Model Answer-Page 3 of 4

Question 3:

a) Find the mean value, RMS value, period, and fundamental frequency in Hz, for the voltage waveform of Fig.(a). (8 Marks)

Mean value = **6.67 V**

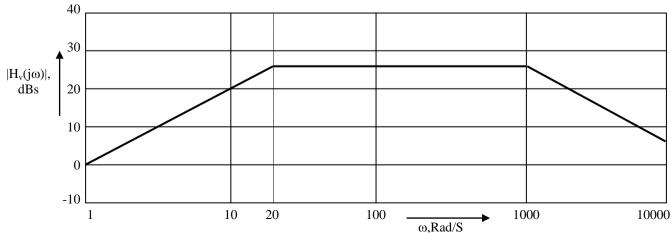




Fundamental frequency =

166.7 Hz

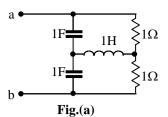
- b) i) What is the type of filter shown Fig.(b)? (2 Marks)
 - ii) Write the voltage transfer function $H_{\nu}(s)$ of that filter. (2 Marks)
 - iii) Find the filter cut-off frequency f_c . (2 Marks)
 - iv) What is the maximum value of $H_{\nu}(s)$? (2 Marks)
 - v) At what frequency will $|H_{\nu}(s)|$ equals half its maximum value? (2 Marks)



Frequency of ½ max value =

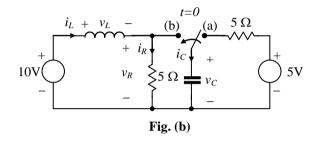
919 Hz

c) Sketch the Bode Diagram of the voltage transfer function: $H_v(s) = \frac{20000 \text{ s}}{(s+20)(s+1000)}$


(6 Marks)

Model Answer-Page 4 of 4

Question 4:


a) Find the s-domain expression of the input impedance seen looking into the terminals a, b of the circuit of Fig.(a). Find also the poles and zeros of that impedance. (10 Marks)

$$Z_{in}(s) = \boxed{\frac{2s^2 + 3s + 1}{2s(s^2 + s + 1)}}$$

b) The switch in the circuit of Fig. (b) is moved from (a) to (b) at t = 0. Find the following currents and voltages:

(12 Marks)

$i_R(0^-)$	2 A
· I(-)	

$$i_R(0^+)$$
 1 A

$$i_c(0^+)$$
 1 A

$$i_L(0^+)$$
 2 A

$$v_L(0^+)$$
 5 V

$$v_R(\infty)$$
 10 V

c) The *a*-parameters of a certain two-port are a_{11} = 3, a_{12} = 10 Ω , a_{21} = 0.5 S, a_{22} = 2. Find the *h*-parameters. (8 Marks)

$$h_{11} = \boxed{5 \,\Omega}$$

$$h_{21} =$$
 0.5

$$h_{12} =$$
 -0.5

$$h_{22} = igg| extbf{0.25 S}$$

اطيب التمنيات بالتوفيق أ.د. مجدى مفيد دوس

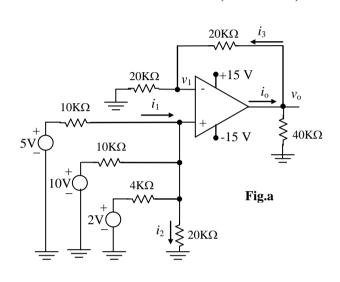
ASSIUT UNIVERSITY FACULTY OF ENGINEERING DEPT. OF ELECTRICAL ENG.

E222 CIRCUIT THEORY

First Term Examination, 2011/2012

2nd Year Elect. جميع الطلبة (لانحة ٢٠٠٤،١٩٩٧)

Time: 3 Hours


الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمي ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.

Question 1:

a) The op-amp in the non-inverting amplifier of Fig.a is ideal. Find the i_1 , i_2 , v_1 , i_3 , v_o , and i_o .

(12 Marks)

$$i_1 = 0.1 \text{ mA}$$
 $i_2 = 0.2 \text{ mA}$
 $v_1 = 4 \text{ V}$
 $i_3 = 0.2 \text{ mA}$
 $v_0 = 8 \text{ V}$
 $i_0 = 0.4 \text{ mA}$

b) The switch in the circuit shown in Fig.b has been in position (a) for a long time before it moves to (b) at t = 0. After 5 mSec, the inductance current i_L dropped to 80% of its initial value. Find the value of L.

 $\left| i_L(t) \right|$ Fig. b

10V

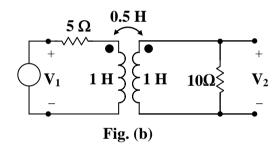
(12 Marks)

$$i_L(0^+) = egin{bmatrix} extbf{0.5 A} \ & i_L(\infty) = egin{bmatrix} extbf{0.25 A} \ & \end{pmatrix}$$

$$i(t) = 0.25 + 0.25e^{-t/\tau}$$

$$i(5\text{mS}) = 0.25 \left(1 + e^{-\frac{5}{\tau}}\right) = 0.4 \text{ A}$$

$$au = 9.788 \text{ mS}$$


$$L = \begin{bmatrix} 392 \text{ mH} \end{bmatrix}$$

Question 2:

a) A three-phase Δ -connected +ve sequence source having the phase voltage V_{ab} =220 \angle 0°V. The source resistance is 1 Ω / Phase. The source supplies an unbalanced Δ -connected resistive load having $R_{ab} = 10\Omega$, $R_{bc} = 9\Omega$ and $R_{ca} = 21\Omega$. The three lines connecting the source to the load have negligible resistance. The load power is measured using the two wattmeter method. The first wattmeter W_I is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

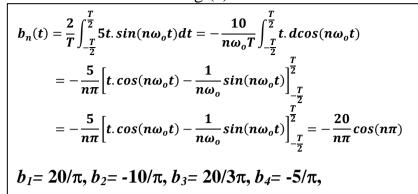
The phase current $\overline{I_{AB}}$ at the load = $20 \angle 0^\circ \text{ A}$ The Line current $\overline{I_A}$ = $26.46 \angle -19.1^\circ \text{ A}$ The line voltage $\overline{V_{AB}}$ at the load = $200 \angle 0^\circ \text{ V}$ The reading of W_I = 5.35 KWThe total power dissipated in the load = 10.35 KW

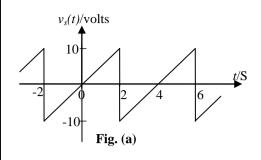
- b) i) Find the voltage transfer function of the circuit of Fig.(b). (6 Marks)
 - ii) Find the poles and zeros of the transfer function. (4 Marks)
 - iii) Find the magnitude of the transfer function at $\omega = 5$ Rad/Sec. (2 Marks)

$$(2s + 10)I_1 + s I_2 = 2 V_1$$

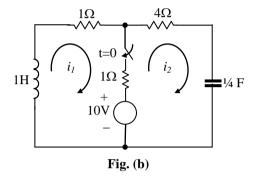
$$SI_1 + (2s + 20)I_2 = 0$$

$$H_v(s) = \frac{20s}{3s^2 + 60s + 200}$$


Poles: - 4.23 , - 15.77 S⁻¹


Zeros: **0**, ∞

 $|H_v(j5)| =$ **0.308**


Question 3:

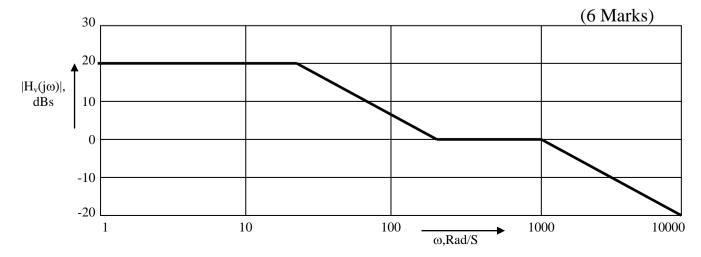
a) Find the first four non-zero terms of the Fourier series of the periodic voltage waveform shown in Fig.(a). (8 Marks)

- b) There is no energy stored in the circuit of Fig.b at the time the switch is closed:
 - i) Write the two mesh equations of the circuit. (4 Marks)
 - ii) Find $I_1(s)$ and $I_2(s)$.
- (4 Marks)
- iii) Find $i_1(t)$ and $i_2(t)$.
- (4 Marks)

The first s-domain mesh equation:
$$(s^2 + 2s) I_1 - s I_2 = -10$$

The second s-domain mesh equation:

-
$$s I_1 + (5s + 4) I_2 = 10$$

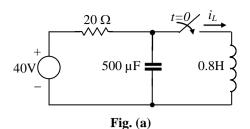

$$I_{I}(s) = \frac{-8}{s(s+1.6)} = \frac{5}{s+1.6} - \frac{5}{s}$$

$$I_2(s) = \frac{2}{s+1.6}$$

$$i_1(t) = [-5 + 5e^{-1.6t}]u(t)A$$

$$i_2(t) = \boxed{2e^{-1.6t}u(t)A}$$

c) Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000 (s + 200)}{(s + 20)(s + 1000)}$



Page 4 of 4 إجابة نموذجية

Question 4:

- a) The switch in the circuit of Fig. (a) has been open a long time before closing at t = 0.
 - i) Find $i_L(0^+)$, $i_L(\infty)$, $v_L(0^+)$, $\frac{di_L}{dt}(0^+)$.
- (8 Marks)
- ii) Write the differential equation of $i_L(t)$. (2 Marks)
- iii) Write the characteristic equation and find its (4 Marks) roots.
- iv) The constants in the solution for $i_L(t)$. (2 Marks)
- v) Find $i_L(t)$ for $t \ge 0$.

(2 Marks)

$$i_L(0^+)$$

0

$$i_L(\infty)$$

2 A

$$v_L(0^+)$$

40 V

$$\frac{di_L}{dt}(0^+)$$

 $\frac{di_L}{dt}(0^+) \sqrt{\frac{V_L(0^+)}{r}} = 50 \text{ A/S}$

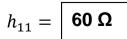
the differential equation of $i_L(t)$

$$\frac{d^2i}{dt^2} + \frac{1}{RC} \cdot \frac{di}{dt} + \frac{1}{LC} \cdot i = \frac{2}{LC}$$

the characteristic equation

$$s^2 + 100 s + 2500 = 0$$

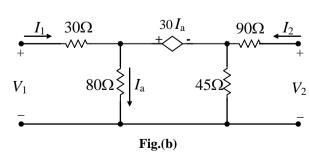
roots of the characteristic equation

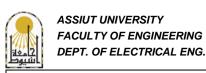

$$s_1 = s_2 = -50$$

The constants

$$D_1 = -50, D_2 = -2$$

$$i_L(t) = 2 - (50 t + 2) e^{-50t}$$


b) Find the h parameters of the circuit shown in Fig.(b). (8 Marks)



$$h_{12} = | \mathbf{0.333}|$$

$$h_{21} = \boxed{ -0.21 }$$

$$h_{22} = \boxed{8.8 \text{ mS}}$$

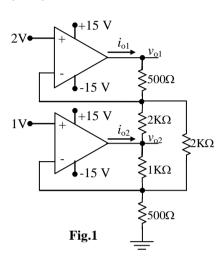
E222 CIRCUIT THEORY

2nd Year Elect.

First Term Examination, 2012/2013

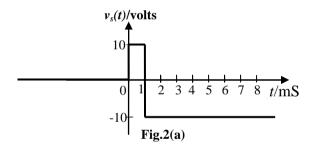
Time: 3 Hours

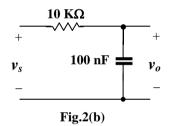
الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمي ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها وخطوات الحل تكون في الصفحة المقابلة.


Question #1: (12 Points)

The two op amps in the circuit in Fig.1 are ideal. Calculate v_{o1} , v_{o2} , i_{o1} and i_{o2} .

$$v_{o1}$$
 = 2.125 V
 v_{o2} = 2.5 V


$$i_{o1}$$
= 0.25 mA


$$I_{o2} = 1.75 \text{ mA}$$

Question #2: (16 Points)

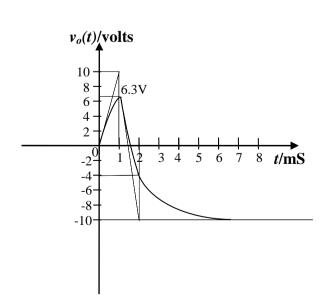
The voltage waveform shown in Fig.2(a) is applied to the circuit of Fig.2(b). The initial voltage on the capacitor is zero. Calculate and sketch $v_0(t)$.

$$v_o(0^+) = 0$$

$$v_o(\infty)_1 = 10 \text{ V}$$

$$\tau$$
 = 1 mS

$$v_o(t) = 10(1 - e^{-t}) V$$

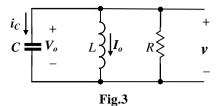

 $0 \le t \le 1 \text{ mS}$

$$v_o(1mS) = 6.3 \text{ V}$$

$$v_o(\infty) = -10 \text{ V}$$

$$v_o(t) = -10 + 16.3 e^{-(t-1)} V$$

 $1\text{mS} \ll t \ll \infty$



Model Answer-Page 2 of 4

Question #3: (10 Points)

The voltage response for the circuit in Fig.3 is known to be $v(t) = D_1 t e^{-500t} + D_2 e^{-500t}$, $t \ge 0$.

The initial current in the inductor (I_0) is -10 mA, and the initial voltage on the capacitor (V_0) is 8 V. The inductor has an inductance of 4 H.

- a) Find the values of R, C, D_1 and D_2 .
- b) Find $i_{\rm C}(t)$ for $t \ge 0^+$.

$$R = 1 \text{ K}\Omega$$

$$C = 1 \text{ }\mu\text{F}$$

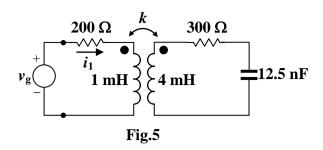
$$D_1 = 6000 \text{ V/S}$$

$$D_2 = 8 \text{ V}$$

$$i_C(t) = -3 t e^{-500t} + 2x10^{-3} e^{-500t} A$$

Question #4: (12 Points)

A three-phase Y-connected +ve sequence source having the phase voltage V_a =260 \angle 0°V. The source resistance is 1 Ω /Phase. The source supplies a balanced Δ -connected load having an impedance of (27 + j15) Ω /Phase. The three lines connecting the source to the load have a resistance of 2 Ω /Line. Find the following:


The Line current $\overline{I_A} =$	20∠-22.6° A
The phase current \overline{I}_{AB} at the load =	11.55∠7.4° A
The line voltage $\overline{V_{AB}}$ at the load =	356.7∠36.4° V
The phase voltage $\overline{V_a}$ at the source terminals =	241.7∠1.8° V
The line voltage $\overline{V_{ab}}$ at the source terminals =	418.6∠31.8° V
The total power dissipated in the load =	10.8 KW

Model Answer-Page 3 of 4

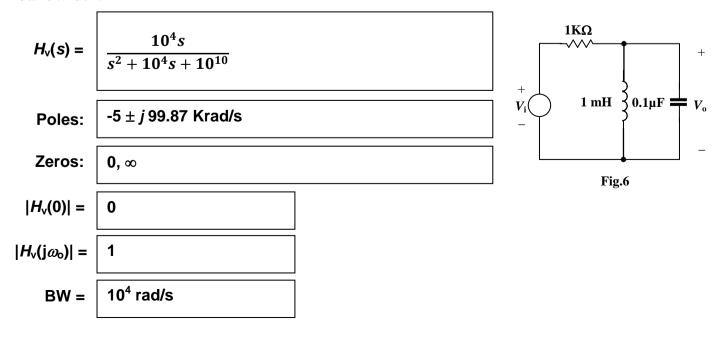
Question #5: (12 Points)

The sinusoidal voltage source in the circuit of Fig.5 is operating at a frequency of 200 Krad/s. The coefficient of coupling is adjusted until the peak amplitude of i_1 is pure real.

- a) What is the value of k?
- b) What is the peak amplitude of i_1 if $v_g = 112 \cos(2 \times 10^5 t) \text{ V}$?

$$Z_{r} = 64 k^{2}(3 - j4)$$

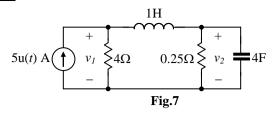
$$i_{1} = \frac{v_{g}}{200 + j200 + 64k^{2}(3 - j4)}$$


$$4 \times 64 k^{2} = 200$$

$$k = 0.88$$

$$i_{1(peak)} = 0.32 A$$

Question #6: (12 Points)


Find the voltage transfer function and its poles and zeros for the circuit of Fig.6. If we consider this circuit as a bandpass filter, find approximate values for its magnitude transfer function at $\omega=0$ and at its central frequency. Find also the value of its bandwidth.

Model Answer-Page 4 of 4

Question #7: (12 Points)

There is no energy stored in the circuit of Fig.7 at the time the current source is energized. Use the Laplace Transform to find the nodal voltages.

Eq. (1):
$$(s + 4)V_1 - 4V_2 = 20$$

Eq. (2):
$$V_1 + (4s^2 + 4s + 1) V_2 = 0$$

$$V_1(s) = \frac{20(s^2 + s + 0.25)}{s(s^2 + 5s + 4.25)}$$

$$v_1(t) = \frac{1.18 - 16.38e^{-1.09t} + 35.2e^{-3.91t}}{s(s^2 + 5s + 4.25)}$$

$$V_2(s) = \frac{5}{s(s^2 + 5s + 4.25)}$$

$$1.18 - 1.63e^{-1.09t} + 0.45e^{-3.91t}$$

Question #8: (6 Points)

A periodic voltage having a period of $10\pi \mu S$ is given by the following Fourier series:

$$v_g = 150 \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \sin \frac{n\pi}{2} \cos n\omega_o t \,\mathrm{V}$$

This periodic voltage is applied to the circuit shown in Fig.8. Find the amplitude and phase angle of the first three components of v_0 .

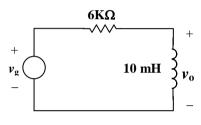


Fig.8

$$\omega_{\rm o} = 2\pi/T = 200 \text{ Krad/s}$$

 $v_q = 150 \cos \omega_0 t - 50 \cos 3\omega_0 t + 30 \cos 5\omega_0 t$

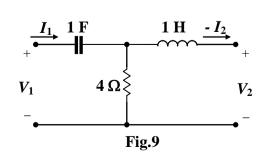
$$v_o = \frac{j2n}{6 + i2n}v_g$$

$$V_{01} = \begin{vmatrix} 47.43 \angle 71.6^{\circ} \text{ V} \end{vmatrix}$$

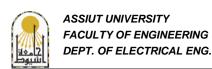
$$V_{\rm o3} = 35.34 \angle -135^{\circ} \text{ V}$$

$$V_{o5} = 25.73 \angle 31^{\circ} \text{ V}$$

Question #9: (8 Points)


Find the s-domain expressions for the a parameters of the two-port circuit shown in Fig.9.

$$a_{11} = \boxed{1 + \frac{1}{4s}}$$


$$a_{21} = \boxed{\frac{1}{4}}$$

$$a_{12} = \boxed{s + \frac{1}{4} + \frac{1}{s}}$$

$$a_{22} = \boxed{\frac{s}{4} + 1}$$

أطيب التمنيات بالتوفيق أ.د. مجدى مفيد دوس

E222 CIRCUIT THEORY

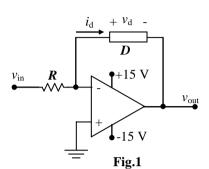
2nd Year Elect.

First Term Examination, 2013/2014

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها وخطوات الحل تكون في الصفحة المقابلة.

Attempt all questions, full mark: 100 Points

Time: 3 Hours

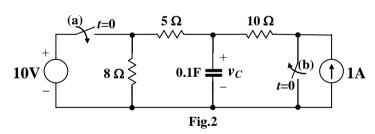

Question #1: (12 Points)

The nonlinear device (D) used in the circuit of Fig.1 has a characteristic given by:

 $i_d = Ie^{\alpha v_d}$, where $v_d > 0$ and $i_d > 0$.

Assuming ideal operational amplifier, and that the nonlinear device is operating with positive values of v_d and i_d ,

- a) find an expression relating v_{out} to v_{in} . (8 Points)
- b) if $I = 0.5 \mu\text{A}$, $\alpha = 40 \text{ V}^{-1}$ and $R = 1 \text{ K}\Omega$, find v_{out} for $v_{in} = 5 \text{ V}$. (4 Points)



$$v_{out} = -\frac{1}{\alpha} \ln \frac{v_{in}}{RI}$$

$$v_{out}$$
 (for $v_{in} = 5 \text{ V}) = -230 \text{ mV}$

Question #2: (14 Points)

The two switches (a) and (b) in the circuit of Fig.2 operate simultaneously. Prior to t=0 switch (a) was open and switch (b) was close for a long time. At t=0, switch (a) is closed and switch (b) is opened.

- a) Find $v_C(0^+)$, $i_C(0^+)$, $v_C(\infty)$, $i_C(\infty)$, and the time constant τ .
- (10 Points)

b) Find $v_C(t)$ and $i_C(t)$ for $t \ge 0$.

(4 Points)

Hint: use the superposition theorem.

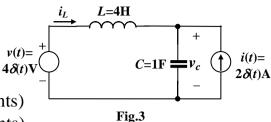
$$V_C(0^+)=0$$

$$V_C(\infty) = 15 \text{ V}$$

$$i_C(0^+) = 3 \text{ A}$$

$$i_C(\infty)=0$$

$$\tau$$
 = 0.5 S

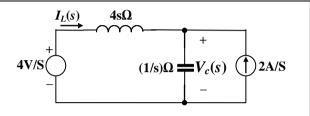

$$v_C(t) = 15(1 - e^{-2t}) V$$

$$i_C(t) = 3 e^{-2t} A$$

Model Answer Page 2 of 4

Question #3: (12 Points)

Consider the circuit in Fig.3 with two inputs $v(t)=4\delta(t)$ V and $i(t)=2\delta(t)$ A. The inductor and capacitor have zero initial state, i.e. $v_C(t=0^-)=0$ and $i_L(t=0^-)=0$.



- a) Draw the s domain equivalent circuit. (2 Points)
- b) Find the capacitor voltage $v_c(t)$, for $t \ge 0.(6 \text{ Points})$
- c) What are the inductor current i_L and the capacitor voltage v_C at t = 0+? (4 Points)

$$V_{C}\left(s + \frac{1}{4s}\right) = 2 + \frac{1}{s}$$

$$V_{C}(s) = \frac{2s + 1}{s^{2} + 0.25}$$

$$v_{C}(t) = 2\cos 0.5t + 2\sin 0.5t$$

$$v_C(t) = 2\sqrt{2}\cos(0.5t + 45^\circ)$$

$$v_C(0^+) = 2 \text{ V}$$

$$i_L(0^+)=1 A$$

Question #4: (12 Points)

a) A three-phase Y-connected +ve sequence source having the phase voltage V_a =240 \angle 0°V and negligible source resistance. The source supplies a balanced Δ -connected load having an impedance of $60\angle 30^\circ$ Ω /phase. The three lines connecting the source to the load have negligible resistance. The load power is measured using the two wattmeter method. The first wattmeter W_I is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

The phase current \overline{I}_{AB} at the load =

6.928∠0° A

The Line current $\overline{I_A} =$

12∠-30° A

The line voltage $\overline{V_{AB}}$ at the load =

415.69 ∠30° V

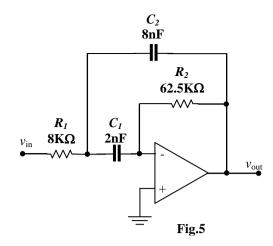
The reading of $W_I =$

2.494 KW

The reading of W_2 =

4.988 KW

The total power dissipated in the load =


7.482 KW

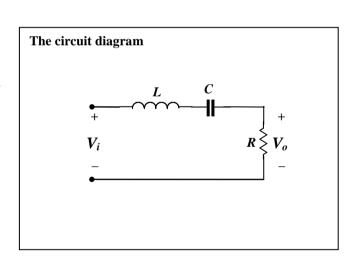
Model Answer Page 3 of 4

Question #5: (14 Points)

Consider the circuit of Fig.5, the operational amplifier is ideal. It is required to:

- a) Find an expression for the voltage transfer function $H_{\nu}(s) = V_{out}(s)/V_{in}(s)$. (6 points)
- b) Compute the numerical values of poles and zeros of the transfer function. (4 points)
- c) If the input is a sinusoidal waveform given by: $v_{in}(t) = 10 \cos(10^4 t + 30^\circ)$ V; give the expression for the output $v_{out}(t)$. (4 points)

$$H_{V}(s) = \frac{-\frac{1}{R_{1}C_{2}}s}{s^{2} + \frac{1}{R_{2}}(\frac{1}{C_{1}} + \frac{1}{C_{2}})s + \frac{1}{R_{1}R_{2}C_{1}C_{2}}} = \frac{-1.5625 \times 10^{4}s}{s^{2} + 10^{4}s + 1.25 \times 10^{8}}$$


Poles: -5 - j 10 Krad/S, -5 + j 10 Krad/S

Zeros: | 0, ∞

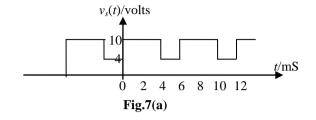
 $V_{\text{out}}(t) = 15.1585 \cos(10^4 t - 135.96^\circ) \text{ V}$

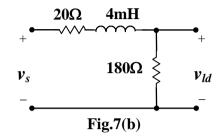
Question #6: (12 Points)

- a) A series *RLC* band-pass filter has a center, or resonant, frequency of 50 kHz and a quality factor of 4. Find the band-width, the upper cutoff frequency, and the lower cut-off frequency. (6 Points)
- b) Use a 5 nF capacitor to design the filter. Draw the circuit diagram and specify the values of *R* and *L*. (6 Points)

$$f_1 = \begin{vmatrix} 44.14 \text{ KHz} \end{vmatrix}$$

$$f_2 = | 56.64 \text{ KHz} |$$


$$R = 159.2 \Omega$$


Question #7: (12 Points)

a) Find the first four Fourier coefficients of the voltage waveform of Fig.7(a).

(4 Marks)

- b) The voltage waveform of Fig.7(a) is applied to the circuit of Fig.7(b). Find the Fourier coefficients of the output voltage v_{ld} . (4 Marks)
- c) Find the *RMS* values of the source voltage and the load voltage. (4 Marks)

$$a_o = 8 V$$

$$C_1 = 3.308 \angle 120^{\circ} \text{ V}$$

$$C_2 = 1.645 \angle 60^{\circ} \text{ V}$$

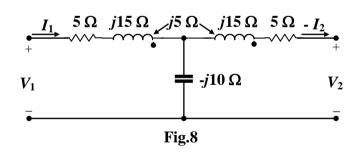
$$C_3 = \mathbf{0}$$

$$V_{s(RMS)} = \boxed{$$
 8.49 V

$$V_{ld1} =$$
 2.377 \angle **83** $^{\circ}$ **V**

$$V_{ld2} =$$
 0.8227 \angle 3.55° V

$$V_{ld3} =$$
 0


$$V_{ld(RMS)} =$$
 7.42 V

Question #8: (12 Points)

a) Find the transmission parameters of the two-port network of Fig.8.

(8 Points)

b) A voltage source $V_s = 75 \angle 0^\circ$ V and source impedance $Z_s = 1 \angle 0^\circ$ Ω is applied to the input port, and a load $Z_L = 10 \angle 0^\circ$ Ω is connected to the output port, find V_2 . (4 Points)

$$a_{21} = | j(1/15) S$$

$$V_2 = 8.01 \angle -85.7^{\circ} \text{ V}$$

$$a_{12} = \boxed{ -10/3 + j5 \Omega}$$

$$a_{22} = -1/3 + j(1/3)$$

0 5.5

20 122

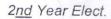
also the

 $= 0.05 \Omega$.

developed

arks)

the armatu


Questions

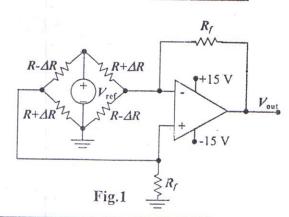
rks)

ASSIUT UNIVERSITY **FACULTY OF ENGINEERING** DEPT. OF ELECTRICAL ENG.

E222 CIRCUIT THEORY

First Term Examination, 2014/2015

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمي ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها وخطوات الحل تكون في الصفحة المقابلة.


Attempt all questions, full mark: 100 Points

Time: 3 Hours

Question #1: (12 Points)

The circuit shown in Fig.1 is used to measure the change in resistance experienced by strain gages.

- a) Derive an expression for the output voltage V_{out} in terms of the resistance values and the reference voltage V_{ref} , assuming ideal op-amp and neglecting ΔR^2 w.r.t. R^2 .
- b) If $R = 160 \Omega$, $\Delta R = 1 \Omega$, $R_f = 1.2 \text{ K}\Omega$, and V_{ref} = 8 V; find the value V_{out} . (4 Points)

Expression for Vout:

$$V_{out} =$$

Value of Vout:

Question #2: (16 Points)

In the circuit shown in Fig.2, the initial currents in inductors L_1 and L_2 are 8A and 1A respectively. The switch is opened at t = 0.

- a) Find i(t), for $t \ge 0$.
- (8 Points)
- b) Find v(t), for $t \ge 0$.

- (2 Points)
- c) Find $i_1(t)$ and $i_2(t)$, for $t \ge 0$.
- (4 Points)
- d) Determine the total energy stored in the inductors as $t \rightarrow \infty$. (2 Points)

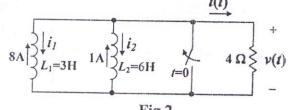


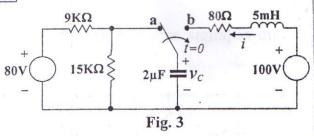
Fig.2

$$i(0^+) =$$

$$i(\infty) =$$

$$\tau =$$

$$v(t) =$$


$$i_1(t) =$$

$$i_2(t) =$$

Energy stored in the inductors as $t\rightarrow\infty$ =

Question	#3:	(12	P	oints))
- Loui	TTJ.	1		DILLES	

The switch in the circuit shown in Fig.3 has been in position (a) for a long time. At t = 0, moves to position (b). Find $i(0^+)$, $v_c(0^+)$, $di(0^+)/dt$, the roots of the characteristic equation s_1 , s_2 and i(t) for $t \ge 0$.

$$i(0^+) =$$

$$V_C(0^+) =$$

$$di(0^+)/dt =$$

$$i(t) =$$

Question #4: (12 Points)

A three-phase Δ -connected -ve sequence source having the phase voltage V_{ab} =240 \angle 0°V and negligible source resistance. The source supplies a resistive unbalanced Δ -connected load having impedances: R_{AB} = 60 Ω , R_{BC} = 40 Ω , and R_{CA} = 80 Ω . The three lines connecting the source to the load have negligible resistances. The load power is measured using the two wattmeter method. The first wattmeter W_I is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

The phase current $\overline{I_{AB}}$ at the load =

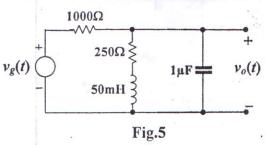
1

The Line current $\overline{I_A} =$

The Line current $\overline{I_C}$ =

e e

The reading of $W_1 =$


The reading of W_2 =

The total power dissipated in the load =

Questio	n #5:	(14)	Points)
		1	

The voltage source v_g drives the circuit shown in Fig.5. The response signal is the voltage across the capacitor, v_o .

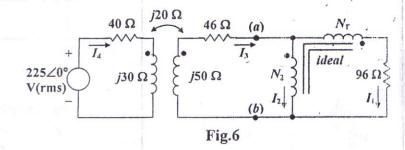
- a) Calculate the numerical expression for the voltage transfer function $H_{\nu}(s) = V_o(s)/V_g(s)$. (6 points)
- b) Calculate the numerical values for the poles and zeros of the transfer function. (4 points)
- c) The circuit is driven by a step voltage source, namely, $v_g = 50u(t)$, find $v_o(t)$. (4 points)

$$H_{v}(s) =$$

Poles:

Zeros:

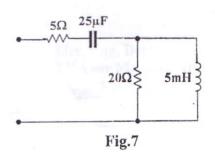
$$V_{\rm out}(t) =$$


Question #6: (12 Points)

The ideal transformer used in the circuit of Fig.6 has a turns ratio $N_2/N_1=3$.

a) Find the reflected impedance at terminals a-b of that transformer.

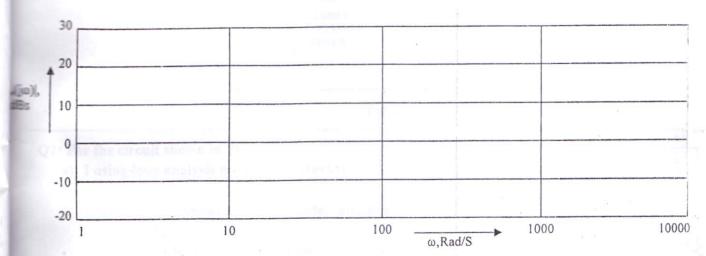
(6 Points)


b) Calculate the value of the currents I_1 , I_2 , I_3 , and I_4 . (6 Points)

$$Z_R =$$

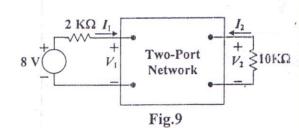
Ouestion #7: (6 Points)

- Calculate the impedance of the circuit shown in Fig.7 at radian frequency of 2 Krad/S. (2 Points)
- b) At what finite frequency (ω_r) does the impedance of the circuit become purely resistive? What is the impedance at that frequency? (4 Points)


$$Z(2Krad) =$$

$$\omega_r =$$

$$Z(\omega_r) =$$


Question #8: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000(s+100)}{(s+10)(s+1000)}$

Question #9: (8 Points)

The y parameters for the two-port network in Fig.9 are: y_{11} = 2mS, y_{12} = -0.2 mS, y_{21} = 10 mS, and y_{22} = -0.5 mS. Find V_1 , V_2 , I_1 , and I_2 .

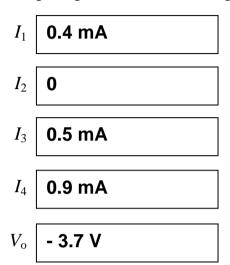
$$V_1 =$$

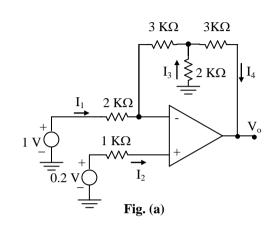
******* Best Wishes, Prof. Magdy M. Doss

ASSIUT UNIVERSITY
FACULTY OF ENGINEERING
DEPT. OF ELECTRICAL ENG.

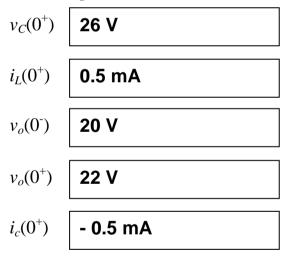
CIRCUIT THEORY

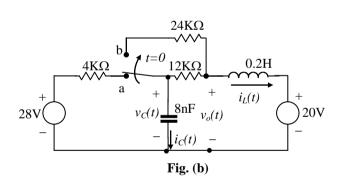
2<u>nd</u> Year Elect. جميع الطلبة (لانحة ٢٠٠٤، ١٩٩٧)

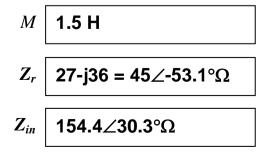

First Term Examination, 2009/2010

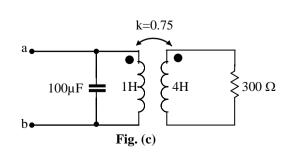

Time: 3 Hours

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الاجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.

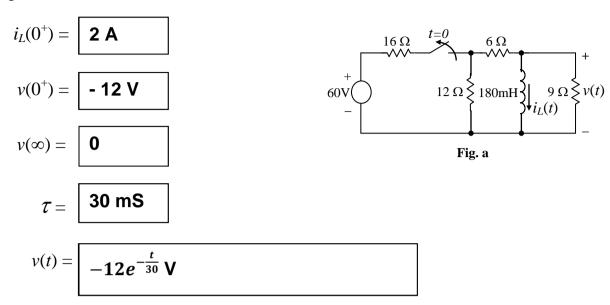

Question 1:


a) The op-amp in the circuit of Fig.a is ideal. Calculate the following: (10 Marks)




b) The switch in the circuit of Fig. (b) has been in position a for a long time. At t=0 it moves to position b. Calculate the following: (10 Marks)

c) The circuit of Fig. (c) operates at radian frequency $\omega = 100$ rad/sec. Find the mutual inductance M, the reflected impedance \mathbf{Z}_r and the input impedance at port a-b. (6 Marks)



إجابة نموذجية - Page 2 of 4

Question 2:

a) The switch in the circuit shown in Fig.a has been closed for a long time before it opens at t = 0. Find v(t) for $0 \le t \le \infty$. (10 Marks)

b) A balanced Y-connected load having an impedance of 18Ω /phase is connected in parallel with a balanced Δ -connected load having an impedance of 36Ω /phase. The parallel loads are fed from lines having an impedance of 2Ω /line. The magnitude of the line-to-neutral voltage at the Y-load is 720 V. Calculate the following:

(10 Marks)

The magnitude of the line current

100 A

The magnitude of the phase current in the Δ - load

 $20\sqrt{3} = 34.6 \text{ A}$

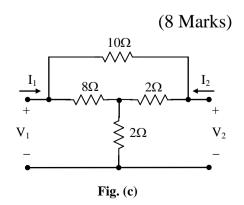
The magnitude of the phase current in the Y-load

40 A

The magnitude of the line voltage at the sending end

 $920\sqrt{3} = 1593.5 \text{ V}$

The total power dissipated in the loads


216 KW

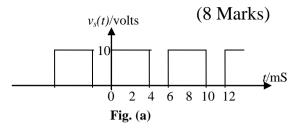
c)For the two-port of Fig. (c), Calculate:

$$z_{11} =$$
 6.8 Ω $a_{21} =$

 $h_{12} =$

 $y_{22} = \boxed{ 0.378 S}$

Question 3:

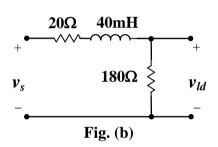

a) Find the first four Fourier coefficients of the voltage waveform of Fig.(a).

$$a_o = \boxed{\mathbf{6.7}}$$

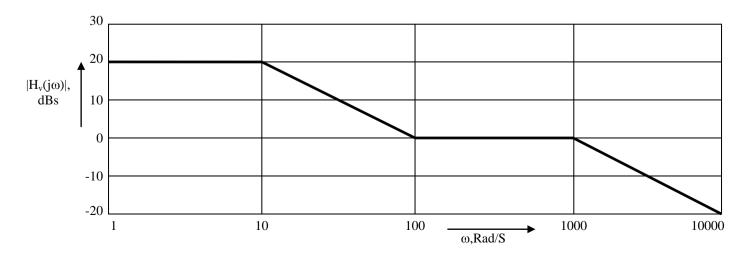
$$C_1 = \boxed{5.5 \angle 150^{\circ}}$$

$$C_2 = 2.76 \angle 30^{\circ}$$

$$C_3 = \boxed{\mathbf{0}}$$

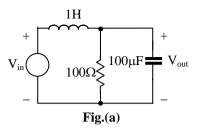

b) The voltage waveform of Fig.(a) is applied to the circuit of Fig. (b). Find the Fourier coefficients of the output voltage v_{ld} . (8 Marks)

$$V_{ldo} = \boxed{\mathbf{6} \ \mathbf{V}}$$


$$V_{ld1} = \begin{vmatrix} 4.85 \angle 138.2^{\circ} V \end{vmatrix}$$

$$V_{ld2} =$$
 2.29 \angle **7.3**° **V**

$$V_{ld3} = \boxed{\mathbf{0}}$$


c) Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000(s+100)}{(s+10)(s+1000)}$ (8 Marks)

إجابة نموذجية - Page 4 of 4

Question 4:

a) Find the voltage transfer function and its poles and zeros for the circuit of Fig.a. (10 Marks)

$$H_{v}(s) = \frac{10^4}{s^2 + 100s + 10^4}$$

Poles: -50 + j 86.6, -50 - j 86.6

Zeros: ∞, ∞

b) The switch in the circuit shown in Fig.b has been opened for a long time before it closes at t = 0. Find $v_c(t)$ for $t \ge 0$. (12 Marks)

$$V_C(s) = \frac{120}{s(s^2 + 4s + 3)}$$

$$= \frac{120}{s(s+1)(s+3)}$$

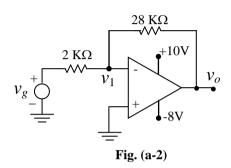
$$= \frac{40}{s} - \frac{60}{s+1} + \frac{20}{s+3}$$

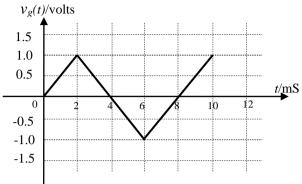
$$v_c(t) = [40 - 60e^{-t} + 20e^{-3t}]u(t) V$$

ASSIUT UNIVERSITY
FACULTY OF ENGINEERING
DEPT. OF ELECTRICAL ENG.

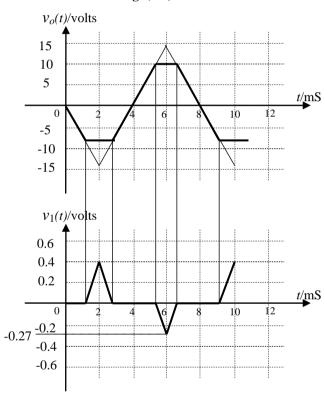
E222 CIRCUIT THEORY

2<u>nd</u> Year Elect. جميع الطلبة (لائحة ۲۰۰۶، ۱۹۹۷)

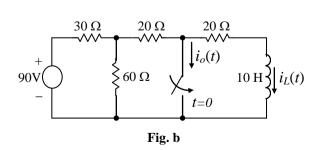

First Term Examination, 2010/2011


Time: 3 Hours

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.


Question 1:

a) The voltage waveform v_g shown in Fig.(a-1) is applied to the circuit of Fig.(a-2). Sketch v_o and v_1 versus t, assuming ideal op-amp. (10 Marks)



b) The switch in the circuit shown in Fig.b has been opened for a long time before it closes at t = 0. Find $i_o(t)$ for $0 \le t \le \infty$. (10 Marks)

$$i_L(0^+) = egin{array}{c} 1 \ A \ & i_O(0^+) = egin{array}{c} 0.5 \ A \ & i_O(\infty) = egin{array}{c} 1.5 \ A \ & & \\ &$$

Model Answer-Page 2 of 4

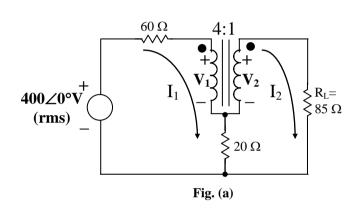
Question 2:

- a) i) Write the two mesh equations for the circuit of Fig.(a) and solve them to find I_I , I_2 , and the power dissipated in R_L . (10 Marks)
 - ii) Find the Thevenin equivalent circuit at the output port, hence find the value of R_L that consumes maximum power, and the value of this power. (6 Marks)

The first mesh equation $80 \ l_1 - 20 \ l_2 + V_1 = 400$

The second mesh equation

$$-20 I_1 + 105 I_2 - V_2 = 0$$


$$I_2 =$$
 1A

$$P_L = \begin{bmatrix} 85 \text{ W} \end{bmatrix}$$

$$R_{Th} = \left|$$
 15 Ω

$$V_{Th}=oxed{100~ extsf{V}}$$

$$P_{max} = \boxed{$$
 166.7 W

b) A three-phase Y-connected +ve sequence source having the phase voltage V_a =220 \angle 0°V. The source resistance is 2 Ω /Phase. The source supplies a balanced Δ -connected load having a load impedance of 36 \angle 30° Ω /Phase. The three lines connecting the source to the load have a resistance of 1 Ω /Line. Find the following: (10 Marks)

The magnitude of the line current | 1

15 A

The magnitude of the phase current in the Δ - load

8.66 A

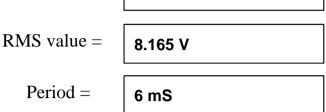
The magnitude of the line voltage at the sending end

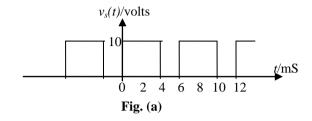
334.5 V

The magnitude of the line voltage at the load

312 V

The total active power dissipated in the load

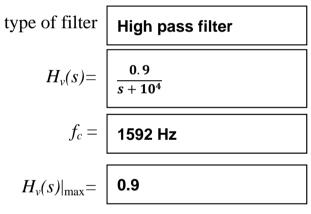

7015 W

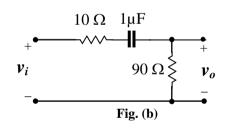

Model Answer-Page 3 of 4

Question 3:

a) Find the mean value, RMS value, period, and fundamental frequency in Hz, for the voltage waveform of Fig.(a). (8 Marks)

Mean value = **6.67 V**

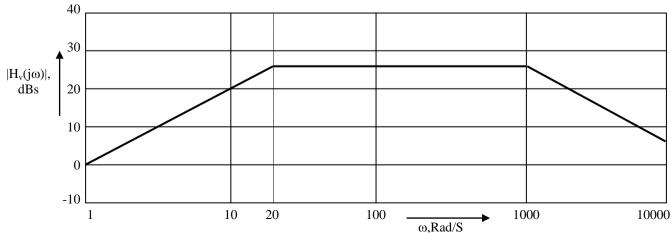




Fundamental frequency =

166.7 Hz

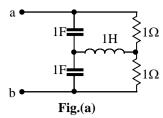
- b) i) What is the type of filter shown Fig.(b)? (2 Marks)
 - ii) Write the voltage transfer function $H_{\nu}(s)$ of that filter. (2 Marks)
 - iii) Find the filter cut-off frequency f_c . (2 Marks)
 - iv) What is the maximum value of $H_{\nu}(s)$? (2 Marks)
 - v) At what frequency will $|H_{\nu}(s)|$ equals half its maximum value? (2 Marks)



Frequency of ½ max value =

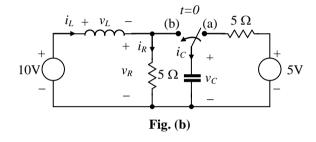
919 Hz

c) Sketch the Bode Diagram of the voltage transfer function: $H_v(s) = \frac{20000 \text{ s}}{(s+20)(s+1000)}$


(6 Marks)

Model Answer-Page 4 of 4

Question 4:


a) Find the s-domain expression of the input impedance seen looking into the terminals a, b of the circuit of Fig.(a). Find also the poles and zeros of that impedance. (10 Marks)

$$Z_{in}(s) = \boxed{\frac{2s^2 + 3s + 1}{2s(s^2 + s + 1)}}$$

b) The switch in the circuit of Fig. (b) is moved from (a) to (b) at t = 0. Find the following currents and voltages:

(12 Marks)

$i_R(0^-)$	2 A
------------	-----

$$i_R(0^+)$$
 1 A

$$i_c(0^+)$$
 1 A

$$i_L(0^+)$$
 2 A

$$v_L(0^+)$$
 5 V

$$v_R(\infty)$$
 10 V

c) The *a*-parameters of a certain two-port are a_{11} = 3, a_{12} = 10 Ω , a_{21} = 0.5 S, a_{22} = 2. Find the *h*-parameters. (8 Marks)

$$h_{11} = \boxed{5 \,\Omega}$$

$$h_{21} =$$
 0.5

$$h_{22} = |$$
 0.25 S

**** أطبب التمنيات بالتوفيق *********** أ.د. مجدى مفيد دوس

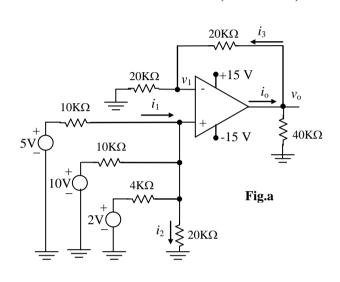
ASSIUT UNIVERSITY FACULTY OF ENGINEERING DEPT. OF ELECTRICAL ENG.

E222 CIRCUIT THEORY

First Term Examination, 2011/2012

2nd Year Elect. جميع الطلبة (لانحة ٢٠٠٤،١٩٩٧)

Time: 3 Hours


الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمي ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها ولن يلتفت لغير ذلك.

Question 1:

a) The op-amp in the non-inverting amplifier of Fig.a is ideal. Find the i_1 , i_2 , v_1 , i_3 , v_o , and i_o .

(12 Marks)

$$i_1 = 0.1 \text{ mA}$$
 $i_2 = 0.2 \text{ mA}$
 $v_1 = 4 \text{ V}$
 $i_3 = 0.2 \text{ mA}$
 $v_0 = 8 \text{ V}$
 $i_0 = 0.4 \text{ mA}$

b) The switch in the circuit shown in Fig.b has been in position (a) for a long time before it moves to (b) at t = 0. After 5 mSec, the inductance current i_L dropped to 80% of its initial value. Find the value of L.

 $\left| i_L(t) \right|$ Fig. b

10V

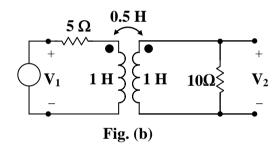
(12 Marks)

$$i_L(0^+) = egin{bmatrix} extbf{0.5 A} \ & i_L(\infty) = egin{bmatrix} extbf{0.25 A} \ & \end{pmatrix}$$

$$i(t) = 0.25 + 0.25e^{-t/\tau}$$

$$i(5\text{mS}) = 0.25 \left(1 + e^{-\frac{5}{\tau}}\right) = 0.4 \text{ A}$$

$$au = 9.788 \text{ mS}$$


$$L = \begin{bmatrix} 392 \text{ mH} \end{bmatrix}$$

Question 2:

a) A three-phase Δ -connected +ve sequence source having the phase voltage V_{ab} =220 \angle 0°V. The source resistance is 1 Ω / Phase. The source supplies an unbalanced Δ -connected resistive load having $R_{ab} = 10\Omega$, $R_{bc} = 9\Omega$ and $R_{ca} = 21\Omega$. The three lines connecting the source to the load have negligible resistance. The load power is measured using the two wattmeter method. The first wattmeter W_I is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

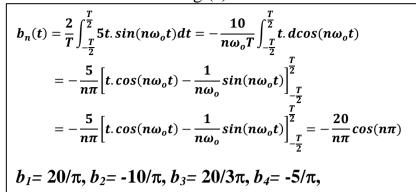
The phase current $\overline{I_{AB}}$ at the load = $20 \angle 0^\circ \text{ A}$ The Line current $\overline{I_A}$ = $26.46 \angle -19.1^\circ \text{ A}$ The line voltage $\overline{V_{AB}}$ at the load = $200 \angle 0^\circ \text{ V}$ The reading of W_I = 5.35 KWThe total power dissipated in the load = 10.35 KW

- b) i) Find the voltage transfer function of the circuit of Fig.(b). (6 Marks)
 - ii) Find the poles and zeros of the transfer function. (4 Marks)
 - iii) Find the magnitude of the transfer function at $\omega = 5$ Rad/Sec. (2 Marks)

$$(2s + 10)I_1 + s I_2 = 2 V_1$$

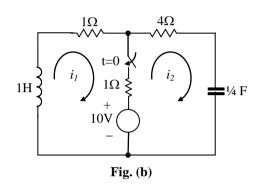
$$SI_1 + (2s + 20)I_2 = 0$$

$$H_v(s) = \frac{20s}{3s^2 + 60s + 200}$$


Poles: - 4.23 , - 15.77 S⁻¹

Zeros: **0**, ∞

 $|H_v(j5)| =$ **0.308**


Question 3:

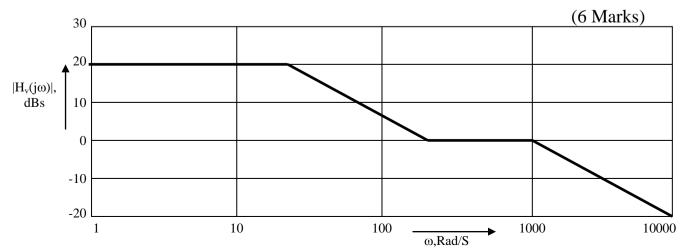
a) Find the first four non-zero terms of the Fourier series of the periodic voltage waveform shown in Fig.(a). (8 Marks)

- b) There is no energy stored in the circuit of Fig.b at the time the switch is closed:
 - i) Write the two mesh equations of the circuit. (4 Marks)
 - ii) Find $I_1(s)$ and $I_2(s)$. (4 Marks)
 - iii) Find $i_1(t)$ and $i_2(t)$. (4 Marks)

The first s-domain mesh equation:
$$(s^2 + 2s) I_1 - s I_2 = -10$$

The second s-domain mesh equation:

$$- s I_1 + (5s + 4) I_2 = 10$$

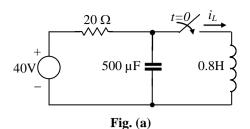

$$I_I(s) = \frac{-8}{s(s+1.6)} = \frac{5}{s+1.6} - \frac{5}{s}$$

$$I_2(s) = \frac{2}{s+1.6}$$

$$i_l(t) = [-5 + 5e^{-1.6t}]u(t)A$$

$$i_2(t) = 2e^{-1.6t}u(t)A$$

c) Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000 (s + 200)}{(s + 20)(s + 1000)}$



Page 4 of 4 إجابة نموذجية

Question 4:

- a) The switch in the circuit of Fig. (a) has been open a long time before closing at t = 0.
 - i) Find $i_L(0^+)$, $i_L(\infty)$, $v_L(0^+)$, $\frac{di_L}{dt}(0^+)$.
- (8 Marks)
- ii) Write the differential equation of $i_L(t)$. (2 Marks)
- iii) Write the characteristic equation and find its (4 Marks) roots.
- iv) The constants in the solution for $i_L(t)$. (2 Marks)
- v) Find $i_L(t)$ for $t \ge 0$.

(2 Marks)

$$i_L(0^+)$$

0

$$i_L(\infty)$$

2 A

$$v_L(0^+)$$

40 V

$$\frac{di_L}{dt}(0^+)$$

 $\frac{di_L}{dt}(0^+) \sqrt{\frac{V_L(0^+)}{r}} = 50 \text{ A/S}$

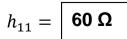
the differential equation of $i_L(t)$

$$\frac{d^2i}{dt^2} + \frac{1}{RC} \cdot \frac{di}{dt} + \frac{1}{LC} \cdot i = \frac{2}{LC}$$

the characteristic equation

$$s^2 + 100 s + 2500 = 0$$

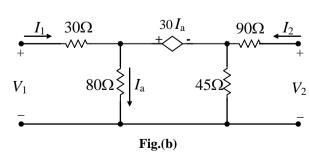
roots of the characteristic equation

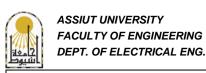

$$s_1 = s_2 = -50$$

The constants

$$D_1 = -50, D_2 = -2$$

$$i_L(t) = 2 - (50 t + 2) e^{-50t}$$


b) Find the h parameters of the circuit shown in Fig.(b). (8 Marks)



$$h_{12} = | \mathbf{0.333}|$$

$$h_{21} = \boxed{ -0.21 }$$

$$h_{22} = \boxed{8.8 \text{ mS}}$$

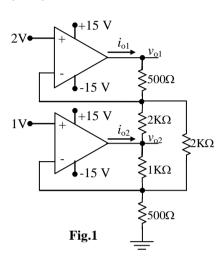
E222 CIRCUIT THEORY

2nd Year Elect.

First Term Examination, 2012/2013

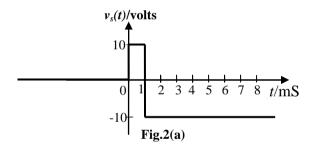
Time: 3 Hours

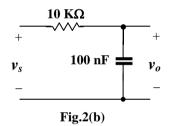
الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمي ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها وخطوات الحل تكون في الصفحة المقابلة.


Question #1: (12 Points)

The two op amps in the circuit in Fig.1 are ideal. Calculate v_{o1} , v_{o2} , i_{o1} and i_{o2} .

$$v_{o1}$$
 = 2.125 V
 v_{o2} = 2.5 V


$$i_{o1}$$
= 0.25 mA


$$I_{o2} = 1.75 \text{ mA}$$

Question #2: (16 Points)

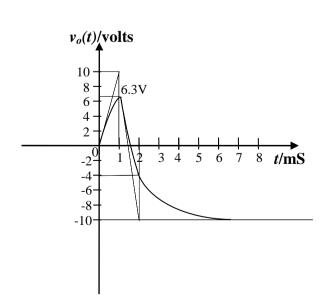
The voltage waveform shown in Fig.2(a) is applied to the circuit of Fig.2(b). The initial voltage on the capacitor is zero. Calculate and sketch $v_0(t)$.

$$v_o(0^+) = 0$$

$$v_o(\infty)_1 = 10 \text{ V}$$

$$\tau$$
 = 1 mS

$$v_o(t) = 10(1 - e^{-t}) V$$

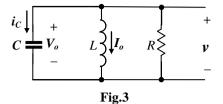

 $0 \le t \le 1 \text{ mS}$

$$v_o(1mS) = 6.3 \text{ V}$$

$$v_o(\infty) = -10 \text{ V}$$

$$v_o(t) = -10 + 16.3 e^{-(t-1)} V$$

 $1\text{mS} \ll t \ll \infty$



Model Answer-Page 2 of 4

Question #3: (10 Points)

The voltage response for the circuit in Fig.3 is known to be $v(t) = D_1 t e^{-500t} + D_2 e^{-500t}$, $t \ge 0$.

The initial current in the inductor (I_0) is -10 mA, and the initial voltage on the capacitor (V_0) is 8 V. The inductor has an inductance of 4 H.

- a) Find the values of R, C, D_1 and D_2 .
- b) Find $i_{\rm C}(t)$ for $t \ge 0^+$.

$$R = 1 \text{ K}\Omega$$

$$C = 1 \text{ }\mu\text{F}$$

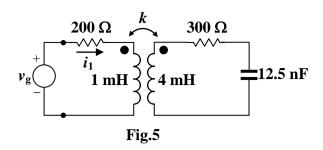
$$D_1 = 6000 \text{ V/S}$$

$$D_2 = 8 \text{ V}$$

$$i_C(t) = -3 t e^{-500t} + 2 \times 10^{-3} e^{-500t} A$$

Question #4: (12 Points)

A three-phase Y-connected +ve sequence source having the phase voltage V_a =260 \angle 0°V. The source resistance is 1 Ω /Phase. The source supplies a balanced Δ -connected load having an impedance of (27 + j15) Ω /Phase. The three lines connecting the source to the load have a resistance of 2 Ω /Line. Find the following:


The Line current $\overline{I_A} =$	20∠-22.6° A
The phase current \overline{I}_{AB} at the load =	11.55∠7.4° A
The line voltage $\overline{V_{AB}}$ at the load =	356.7∠36.4° V
The phase voltage $\overline{V_a}$ at the source terminals =	241.7∠1.8° V
The line voltage $\overline{V_{ab}}$ at the source terminals =	418.6∠31.8° V
The total power dissipated in the load =	10.8 KW

Model Answer-Page 3 of 4

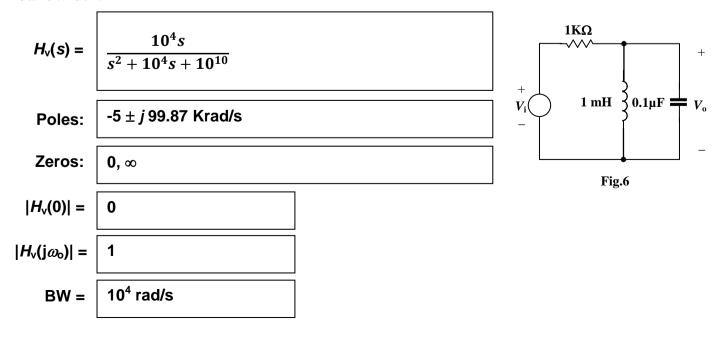
Question #5: (12 Points)

The sinusoidal voltage source in the circuit of Fig.5 is operating at a frequency of 200 Krad/s. The coefficient of coupling is adjusted until the peak amplitude of i_1 is pure real.

- a) What is the value of k?
- b) What is the peak amplitude of i_1 if $v_g = 112 \cos(2 \times 10^5 t) \text{ V}$?

$$Z_{r} = 64 k^{2}(3 - j4)$$

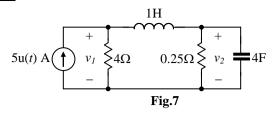
$$i_{1} = \frac{v_{g}}{200 + j200 + 64k^{2}(3 - j4)}$$


$$4 \times 64 k^{2} = 200$$

$$k = 0.88$$

$$i_{1(peak)} = 0.32 A$$

Question #6: (12 Points)


Find the voltage transfer function and its poles and zeros for the circuit of Fig.6. If we consider this circuit as a bandpass filter, find approximate values for its magnitude transfer function at $\omega=0$ and at its central frequency. Find also the value of its bandwidth.

Model Answer-Page 4 of 4

Question #7: (12 Points)

There is no energy stored in the circuit of Fig.7 at the time the current source is energized. Use the Laplace Transform to find the nodal voltages.

Eq. (1):
$$(s + 4)V_1 - 4V_2 = 20$$

Eq. (2):
$$V_1 + (4s^2 + 4s + 1) V_2 = 0$$

$$V_1(s) = \frac{20(s^2 + s + 0.25)}{s(s^2 + 5s + 4.25)}$$

$$v_1(t) = \frac{1.18 - 16.38e^{-1.09t} + 35.2e^{-3.91t}}{s(s^2 + 5s + 4.25)}$$

$$V_2(s) = \frac{5}{s(s^2 + 5s + 4.25)}$$

$$1.18 - 1.63e^{-1.09t} + 0.45e^{-3.91t}$$

Question #8: (6 Points)

A periodic voltage having a period of $10\pi \mu S$ is given by the following Fourier series:

$$v_g = 150 \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \sin \frac{n\pi}{2} \cos n\omega_o t \,\mathrm{V}$$

This periodic voltage is applied to the circuit shown in Fig.8. Find the amplitude and phase angle of the first three components of v_0 .

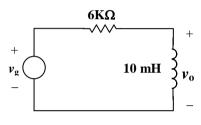


Fig.8

$$\omega_{\rm o} = 2\pi/T = 200 \text{ Krad/s}$$

 $v_q = 150 \cos \omega_0 t - 50 \cos 3\omega_0 t + 30 \cos 5\omega_0 t$

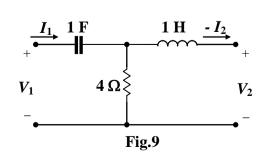
$$v_o = \frac{j2n}{6 + i2n}v_g$$

$$V_{01} = \begin{vmatrix} 47.43 \angle 71.6^{\circ} \text{ V} \end{vmatrix}$$

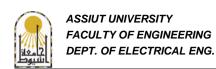
$$V_{\rm o3} = 35.34 \angle -135^{\circ} \text{ V}$$

$$V_{o5} = 25.73 \angle 31^{\circ} \text{ V}$$

Question #9: (8 Points)


Find the s-domain expressions for the a parameters of the two-port circuit shown in Fig.9.

$$a_{11} = \boxed{1 + \frac{1}{4s}}$$


$$a_{21} = \boxed{\frac{1}{4}}$$

$$a_{12} = \boxed{s + \frac{1}{4} + \frac{1}{s}}$$

$$a_{22} = \boxed{\frac{s}{4} + 1}$$

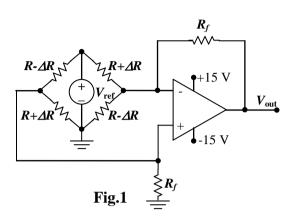
أطيب التمنيات بالتوفيق أ.د. مجدى مفيد دوس

E222 CIRCUIT THEORY

2nd Year Elect.

Time: 3 Hours

First Term Examination, 2014/2015


Model Answer

Attempt all questions, full mark: 100 Points

Ouestion #1: (12 Points)

The circuit shown in Fig.1 is used to measure the change in resistance experienced by strain gages.

- a) Derive an expression for the output voltage V_{out} in terms of the resistance values and the reference voltage V_{ref} , assuming ideal op-amp and neglecting ΔR^2 w.r.t. R^2 .
- b) If $\mathbf{R} = 160 \Omega$, $\Delta \mathbf{R} = 1 \Omega$, $\mathbf{R}_f = 1.2 \text{ K}\Omega$, and \mathbf{V}_{ref} = 8 V; find the value V_{out} . (4 Points)

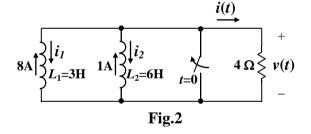
Expression for Vout:

$$V_{out} = \frac{2R_f \Delta R}{R^2} \cdot V_{ref}$$

Value of Vout:

$$V_{out} = 0.75 \text{ V}$$

Question #2: (16 Points)


In the circuit shown in Fig.2, the initial currents in inductors L_1 and L_2 are 8A and 1A respectively. The switch is opened at t = 0.

a) Find i(t), for $t \ge 0$.

- (8 Points)
- b) Find v(t), for $t \ge 0$.

- (2 Points)

- c) Find $i_1(t)$ and $i_2(t)$, for $t \ge 0$.
- (4 Points)
- d) Determine the total energy stored in the inductors as $t \rightarrow \infty$. (2 Points)

$$i(0^+) = 9 A$$

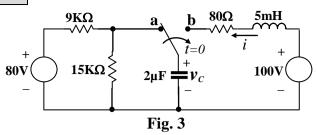
$$i(\infty)=0$$

$$\tau$$
 = 0.5 S

$$i(t) = 9 e^{-2t} A$$

$$v(t) = 36 e^{-2t} V$$

$$i_1(t) = -2 - 6 e^{-2t} A$$


$$i_2(t) = 2 - 3 e^{-2t} A$$

Energy stored in the inductors as $t\rightarrow \infty = 18 \text{ J}$

Model Answer Page 2 of 4

Question #3: (12 Points)

The switch in the circuit shown in Fig.3 has been in position (a) for a long time. At t = 0, it moves to position (b). Find $i(0^+)$, $v_c(0^+)$, $di(0^+)/dt$, the roots of the characteristic equation s_1 , s_2 and i(t) for $t \ge 0$.

$$i\left(0^{+}\right)=0$$

$$v_C(0^+)=50~\mathrm{V}$$

$$di(0^+)/dt = 10^4 \text{ A/S}$$

$$s_1 = -8000 + j6000$$

$$s_2 = -8000 - j6000$$

$$i(t) = 1.6736 e^{-8000t} \sin(6000t) A$$

Question #4: (12 Points)

A three-phase Δ -connected -ve sequence source having the phase voltage $V_{ab}=240\angle0^{\circ}\text{V}$ and negligible source resistance. The source supplies a resistive unbalanced Δ -connected load having impedances: $R_{AB}=60~\Omega$, $R_{BC}=40~\Omega$, and $R_{CA}=80~\Omega$. The three lines connecting the source to the load have negligible resistances. The load power is measured using the two wattmeter method. The first wattmeter W_1 is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

The phase current \overline{I}_{AB} at the load =

4∠0° A

The Line current $\overline{I_A} =$

6.08∠25.3° A

The Line current $\overline{I_C}$ =

7.94∠79.1° A

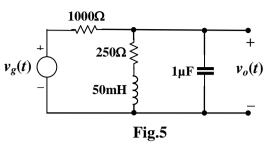
The reading of $W_I =$

1.32 KW

The reading of W_2 =

1.8 KW

The total power dissipated in the load =


3.12 KW

Model Answer Page 3 of 4

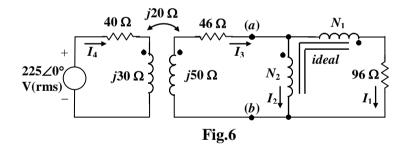
Question #5: (14 Points)

The voltage source v_g drives the circuit shown in Fig.5. The response signal is the voltage across the capacitor, v_o .

- a) Calculate the numerical expression for the voltage transfer function $H_{\nu}(s) = V_o(s)/V_g(s)$. (6 points)
- b) Calculate the numerical values for the poles and zeros of the transfer function. (4 points)
- c) The circuit is driven by a step voltage source, namely, $v_g = 50u(t)$, find $v_o(t)$. (4 points)

$$H_{v}(s) = \frac{1000(s + 5000)}{s^2 + 6000s + 25 \times 10^6}$$

$$V_{\text{out}}(t) = \left[[10 + 11.18 \, e^{-3000t} \cos(4000t - 153.4^{\circ})] u(t) \, V \right]$$


Question #6: (12 Points)

The ideal transformer used in the circuit of Fig.6 has a turns ratio $N_2/N_1=3$.

a) Find the reflected impedance at terminals a-b of that transformer.

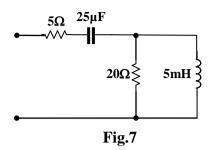
(6 Points)

b) Calculate the value of the currents I_1, I_2, I_3 , and I_4 . (6 Points)

$$Z_R = \left(\frac{a}{1+a}\right)^2 R_L = 54\Omega$$

$$I_1 = 0.584 \angle 30.1^{\circ} \text{ A}$$

$$I_2 = 0.195 \angle 30.1^{\circ} \text{ A}$$

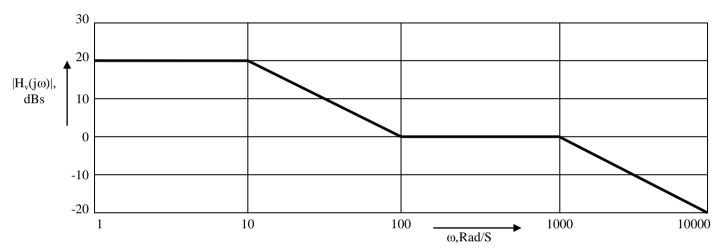

$$I_3 = 0.779 \angle 30.1^{\circ} \text{ A}$$

$$I_4 = 4.35 \angle -33.3^{\circ} \text{ A}$$

Model Answer Page 4 of 4

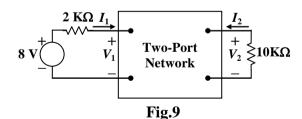
Question #7: (6 Points)

- a) Calculate the impedance of the circuit shown in Fig.7 at radian frequency of 2 Krad/S. (2 Points)
- b) At what finite frequency (ω_r) does the impedance of the circuit become purely resistive? What is the impedance at that frequency? (4 Points)


$$Z(2Krad) = 9 - j12 \Omega$$

$$\omega_r = 4 \text{ Krad/S}$$

$$Z(\omega_r) = 15 \Omega$$


Question #8: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_{\nu}(s) = \frac{1000(s+100)}{(s+10)(s+1000)}$

Question #9: (8 Points)

The y parameters for the two-port network in Fig.9 are: y_{11} = 2mS, y_{12} = -0.2 mS, y_{21} = 10 mS, and y_{22} = -0.5 mS. Find V_1 , V_2 , I_1 , and I_2 .

$$V_1 = -1.6 \text{ V}$$

$$V_2 = -40 \text{ V}$$

$$I_1 = 4.8 \text{ mA}$$

$$I_2 = 4 \text{ mA}$$

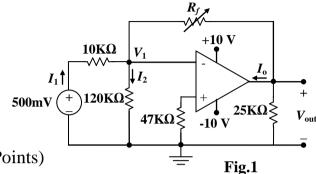
ASSIUT UNIVERSITY
FACULTY OF ENGINEERING
DEPT. OF ELECTRICAL ENG.

E222 CIRCUIT THEORY(2)

2nd Year Elect.

First Term Examination, 2015/2016

الامتحان مكون من أربع صفحات، الإجابة في نفس ورقة الأسئلة، النهاية العظمى ١٠٠ درجة. الإجابة النهائية يجب أن تكون مكتوبة في المكان المخصص لها وخطوات الحل تكون في الصفحة المقابلة.


Attempt all questions, full mark: 100 Points

Time: 3 Hours

Question #1: (12 Points)

The feedback resistance R_f in the circuit of Fig.1 is variable. Assuming ideal op-amp find:

- a) The range of values for R_f in which the opamp does not saturate. (2 Points)
- b) V_{out} , I_0 , I_1 , and I_2 for $R_f = 50 \text{ K}\Omega$. (4 Points)
- c) V_{out} , V_1 , I_0 , I_1 , and I_2 for $R_f = 360 \text{ K}\Omega$. (6 Points)

a)
$$0 \le R_f \le 200 \text{ K}\Omega$$

b)
$$V_{out} = -2.5 \text{ V}$$

$$I_0 = 150 \, \mu A$$

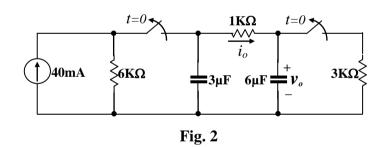
$$I_1 = 50 \, \mu A$$

$$I_2 = 0$$

c)
$$V_{\text{out}} = -10 \text{ V}$$

$$V_1 = 200 \text{ mV}$$

$$I_{\rm o} = 428.3~\mu{\rm A}$$


$$I_1 = 30 \mu A$$

$$I_2 = 1.67 \, \mu A$$

Question #2: (16 Points)

Both switches in the circuit in Fig.2 have been closed for a long time. At t = 0, both switches open simultaneously.

- a) Find $i_o(t)$ for $t \ge 0^+$.
- (8 Points)
- b) Find $v_o(t)$ for $t \ge 0^+$.
- (4 Points)
- c) Calculate the energy (in micro joules) trapped in the circuit. (4 Points)

$$i_o(0^+) = 24 \text{ mA}$$

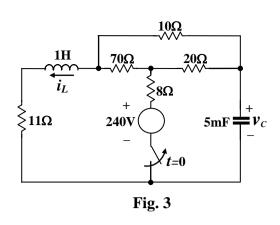
$$i_o(\infty)=0$$

$$\tau = 2mS$$

$$i_o(t) = 24 e^{-500t}$$

$$v_o(t) = 80 - 8 e^{-500t}$$

Energy trapped in the circuit = 28800 μJ


Model Answer Page 2 of 4

Question #3: (12 Points)

The switch in the circuit shown in Fig.3 has been closed for a long time. The switch opens at t = 0. Find $v_c(0^+)$, $i_L(0^+)$, $[dv_c/dt]_{0+}$, the roots of the characteristic equation s_1 , s_2 and $v_c(t)$ for $t \ge 0$.

$$V_C(0^+) = 108 \text{ V}$$

$$i_L(0^+)=6$$
 A

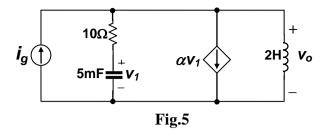
$$[dv_o/dt]_{0+}$$
= - 1200 V/S

$$s_1 = -10 - j10$$

$$s_2 = -10 + j10$$

$$v_c(t) = (108\cos 10t - 12\sin 10t)e^{-10t}$$
volts

Question #4: (12 Points)


A three-phase Y-connected +ve sequence source having the phase voltage V_a =220 \angle 0°V. The source resistance is 1 Ω /Phase. The source supplies a balanced Δ -connected load having an impedance of (30 + j12) Ω /Phase. The three lines connecting the source to the load have an impedance of 1+j1 Ω /Line. Find the following:

C	
The Line current $\overline{I_B} =$	16.9 ∠-142.6° A
The phase current $\overline{I_{AB}}$ at the load=	9.77 ∠7.4° A
The Line voltage V_{BC} =	315.6 ∠-90.8° V
The phase voltage $\overline{V_a}$ at the source terminals=	204.5 ∠1.8° V
The Line voltage $\overline{V_{ab}}$ at the source terminals=	354.2 ∠31.8° V
The total power dissipated in the load =	8.592 KW

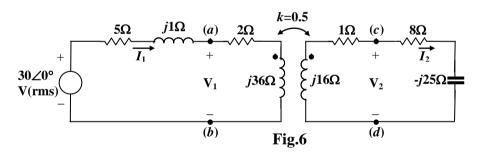
Model Answer Page 3 of 4

Question #5: (12 Points)

Use the Laplace transform to find v_o and v_I in the circuit shown in Fig.5 if $i_g = 10u(t)$ mA and $\alpha = 75$ mA/V. There is no energy stored in the circuit at t=0.

$$V_o(s) = \frac{0.1(s+20)}{s^2+20s+100} = \frac{0.1}{s+10} + \frac{1}{(s+10)^2}$$

$$V_1(s) = \frac{2}{(s+10)^2}$$


$$v_o(t) = (t + 0.1)e^{-10t}$$
 volts

$$v_1(t) = 2te^{-10t} \text{ volts}$$

Question #6: (12 Points)

The linear transformer used in the circuit of Fig.6 has a coupling coefficient k = 0.5.

a) Calculate the impedance reflected into the primary winding \mathbf{Z}_r . (4 Points)

- b) Calculate the impedance seen looking into the primary terminals of the transformer Z_{ab} . (2 Points)
- c) Calculate the Thevenin equivalent with respect to the terminals *c,d*. (6 Points)

$$Z_r = 8 + j8 = 11.31 \angle 45^{\circ} \Omega$$

$$Z_{Th} = 1.71 + j12.24 = 12.36 \angle 82^{\circ} \Omega$$

$$Z_{ab} = 10 + j44 = 45.12 \angle 77.2^{\circ} \Omega$$

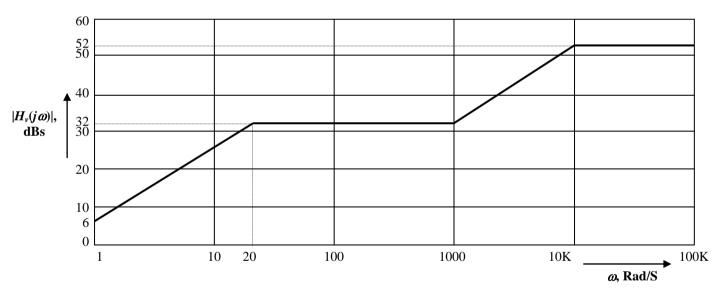
$$V_{Th} = 9.39 + j1.77 = 9.56 \angle 10.7^{\circ} \text{ V}$$

Question #7: (8 Points)

Fig.7 shows an *R-L* high pass filter.

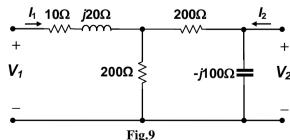
- a) What is the transfer function, $H(s) = V_0(s)/V_i(s)$, of this filter? (4 Points)
- b) What is the cutoff frequency of this filter? (2 Points)
- c) What is the maximum value of the transfer function; and at what frequency does it occur? (2 Points)

$$H(s) = \frac{2s}{3s + 6 \times 10^4}$$


$$\omega_c$$
 = 2 x 10⁴ Rad/Sec

$$H_{max} = 2/3$$

at
$$\omega = \infty$$


Question #8: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_v(s) = \frac{400s(s+1000)}{(s+20)(s+10000)}$

Question #9: (8 Points)

Find the *h* parameters of the two-port circuit shown in Fig.9.

$$h_{11} = 110 + j20 \Omega$$

$$h_{21} = -0.5$$

$$h_{12} = 0.5$$

$$h_{22}$$
 = 2.5 + j 10 mS

Assiut University Faculty of Eng. Civil Eng. Dept.

Planning & Design of Transportation Infrastructure (Elective Course) Year-Work Exam: May 2008 3rd year Time: 1 hr.

Answer All Questions, assume any missing data you may need.

- 1. a) Draw a neat sketch showing a double railway?
 - b) What are the types of sleepers which are used in railroad, describe the advantage of each type?
 - c) A railway line of Max. speed 140 km/hr, with normal track width, wooden sleeper and distance from centerline to centerline is 60 cm, the Max. axial load is 26 ton, and distance between axis is more than 3.0 m.

It is required to:

- i) Design cross section of Vignole Rail from first assumption.
- ii) Draw Vignole Rail with scale 1:1.
- iii) Bending and normal stress in sleeper which cross section is 26x16 cm, if the plate width under rail is 150 mm
- 2. a) Draw a flow chart showing the main stages in transportation planning procedure.
 - b) State the main factors affecting highways design.
 - c) It is proposed to widen a two-way highway because of traffic congestion, where counts show that the ADT (2007) is 3500 vehicle/day of which 15% trucks. A traffic development due to improvements on land adjacent to the highway by the end of the design period (2027) is expected to be 600 pcu's/hour.

Average normal traffic growth 5% /year,

(DHV/ADT) = 0.15,

Directional distribution factor (D) = 70%,

Practical lane capacity = 600 pcu's/hour.

It is required to:

- i) Design the cross section of the proposed new highway.
- ii) Draw your designed cross section showing all dimensions, where the original ground level = (11.00) m and the road level = (13.00) m.

Examiners

Dr. Mahmoud Enieb

Dr. Ghada S. Moussa

(ارجة

قسم الهندسة المعمارية مقرر شق الضوء - هم ٢ ٢ ٢ ثانية عمارة - لائحة ٤٠٠٠ الزمن: ٣ ساعات مع الصوت ولنكف الدرجة: ٢٠ درجة كلية الهندسية جامعة أسيوط إمتحان نهاية الفصل الدراسي الثانى 2014 / 2015

• الإمتحان يقيس مهارات أ. ١. ١، ب. ١٥. ٤، ج. ٢. ٢. و الإمتحان مكون من ١ صفحة - ٢ أسنلة + ٢جداول

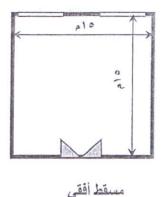
ملاحظات هامة

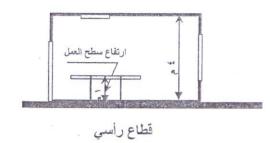
أجب عن الأسئلة التالية

السؤال الأول (١٢ درجة):

المطلوب: اجب عن الأسئلة الأتية:

أ. ماهي أنواع الإبهار طبقا للآتي: لطبيعة المصدر - كيفية النظر - ظروف الرؤية، وكيف يمكن تلافيه


ج. فراغ على شكل منشور سداسي ناقص ضلع القاعدة ٢٠ م، والارتفاع عند اعلي نقطة ٩ م واقل نقطة ٦ م على المحيط مقابلة الله بين شدة الاستضاءة في نقطتين بالأرضية، الأولى في مركز الأرضية السداسية ، والنقطة الثانية على المحيط مقابلة القطة في السقف وذلك في حالة تعليق نجفة بمركز السقف قوتها ٤٠٠٠ شمعة قياسية منخفضة عن المركز بمقدار المتحدد المركز بمقدار المتحدد المركز بمقدار المتحدد (٤ مرجة)


السؤال الثاني: (٨ درجة)

المطلوب اجب عن الأسئلة الآتية:

أ- ماذا تعرف عن نظام الإضاءة SOLAR TUBE و متى يمكن تطبيقه في المباني برحضاءة SOLAR TUBE و متى يمكن تطبيقه في المباني برحضاءة وتوزيعها في فراغ مكتبة مدرسية أبعادها موضحة بالرسم والتى تكفل تحقيق مستوى استضاءة على مناضد القراءة قدرها Lux ٥٥٠ لوكس بحيث يكون معامل الانعكاس للسقف Ceiling reflection استضاءة على مناضد القراءة قدرها ٣٠٠ ومعامل الصيانة ٥٥٠ . .

- يستعمل مصباح الفلورسنت ٤٠ وات طولة ٢٠ سم والفيض التصميمي له ١٧٠٠ Lumen اليومن، و الأجهزة -النوع المركز ذات العواكس المرأوية.

--إنتهت الأسئلة-----

مع اطيب الدعاء بالتوفيق،،،،

د محمد عبد الو

E-11) +

zation factors

	1 2 4 1			1		
Luminaire, and Typical	Typical Outling		c Celling	Reflectance %	مالم انعكاس 60-	30 car-
Output Ratio %	Typicsi Outlins	DLON	Wells	60 30 10	50 50 10	50 30 10
		د لِنُ لِمَرْنَهُ"	Index			
colour-corrected mercury lamp		85	0.6 0.5	0-4 0-34 0-3 0-53 0-46 0-41	0-39 0-33 0-29 0-51 0-45 0-4 .	0-37 0-32 0-29 0-49 0-43 0-4
معداع زئبقي عاك			1 1.25	0.62 0.55 0.49; 0.68 0.6 0.55 0.72 0.65 0.59	0.58 0.52 0.48 0.64 0.58 0.53 0.68 0.62 0.57	0-58 0-51 0-46 0-81 0-58 0-51 0-85 0-59 0-54
للوم			1.5 2.5	0.81) 0.73 0.87 0.85 0.78 0.72	0.75 0.69 0.84 0.79 0.73 0.89	. 0.69 0.65 0.61 0.73 0.68 0.65
*			3	0.9 0.83 0.78 . 0.94 0.89 0.84	0.83 0.78 0.75 0.87 0.83 0.8	0.77 0.73 0.7 0.8 0.77 0.75
			Б	0.97 0.92 0.89	0-9 0-87 0-84	0.83 0.79 0.77
				*	, g.e.	
	×c			~ <u>.</u>	Δ.	
فنر				0.20 0.21 0.20	0-35 0-31 0-28	D-35 D-31 D-28
mal trough [75-85]	(0)	75	0.8	0.38 0.31 0.28 0.45 0.4 0.37 0.49 0.45 0.4	0-44 0-4 0-37 0-49 0-44 0-4	D-44 D-4 D-37 D-48 D-43 D-4
			1·25 1·5	0.55 0.49 0.48 0.58 0.54 0.49	0-53 0-49 0-45 0-57 0-53 0-49	0.52 0.48 0.45 0.55 0.52 0.45
		- 6	2	0-64 0-59 0-55 0-68 0-03 0-8	0-81 0-58 0-55 -0-65 0-62 0-59	0.6 0.56 0.56 0.64 0.61 0.5
			2.5	0·7. 0·65 0·62 0·73.0·7 0·67	0-67 0-64 0-81 0-7 0-67 0-85	0.65 0.63 0.6 0.67 0.65 0.6
enemal trough (65–83)			5	0.75 0.72 0.89	0.73 0.7 0.67	0.7 0.88 0.6
	4					
- ne						
persive industrial reflector (77)						
الما من من			,	8.2		
E ***		e			2.0	
		*			8	
	,			ř -		
					0.20 0.20 0.22	0-39 0-35 0-7
industrial reflector (72-76)		. 70	8.0	0-39 0-36 0-33 0-48 0-43 0-4	0-39 0-38 0-33 0-48 0-43 0-4 0-52 0-48 0-45	0-46 0-43 0-4 0-52 0-48 0-4
eflactor, aluminium (72) or			1 1-25	0.52 0.49 0.45 0.58 0.53 0.5	0.52 0.48 0.43 0.58 0.53 0.48 0.59 0.57 0.53	0-58 0-52 0-4 0-58 0-55 0-1
1		6 0	1.5	0-8 0-57 0-54 0-85 0-82 0-59	0-63 0-5 0-58	0-63 0-53 0-7 0-65 0-62 0-
			2.5	0.67 0.84 0.52 0.69 0.68 0.54	0-85 0-62 0-61 0-87 0-84 0-83	0-67 0-64 0- 0-69 0-86 0-1
· pat			4 5	0.71 0.88 0.87	0-80 0-67 0-85 0-71 0-68 0-87	0-89 0-86 0-1

				care	الماسينية ا	القدرة	قطر	الحدك	البشدة.
	*			- C	السيمو	المملية	الأشوبة	الأنسوع	الصرية
		1 ,		نوبين)	(ندافي ١١	رات.	مم	-	الوات.:
DOM: DOM:	The second secon			VIII.	/·	Ort street to many	ì	·V	V
					•		THE PERSON NAMED IN COLUMN	AND AND AND ADDRESS OF THE PARTY OF THE PART	
	e e			\	67	1 -	15	100	. 1
					4.3	16	ar	672	Γ,
	10			7	٦,	10	10	4	A -
	واع الفلورمنت		لعثين الد		179.	77	14	070	17.
	لغيم يغرب الدنيوسا لنضميم		-		١	44.	12	.500	41
	، خليت بشاء	بين المعا	لدافئ الأي	. v	13-	٠٤.	Y.X	88.	15
	WHITE	1		. 11		# Q.	YX.	7	7.
	WARM WHITE	1	*	51	6.	2.	47	9	· 7.
	DAYLIGHT .	0.95	*	14	, & <u>,</u>	2.	71		l.e
1	HOME - LITE	0.75				-	11	9	, T
1		0.7	*	(1)	•	993	78	7	5.
2	DELUXE WARM WHITE	0.65		< 4	1	2.	74	15.0	1
	COLOUR MATCH ING (HOTH)	0.65		-				- NO.	4.
-1	GRAPHIC A 47	0.6		46	, en	A.	8 2	1010	. 5.
	DELUXE HATURAL	0.55		17	D.	A	,44	1000	& j"
	SOFTON %	0.55		70	~	Ä	YA .	1110	Ys
	TRUCOLOUR	0.5	3 %	ΦÅ	. 60	20	7 A	in	
	ARTIFICIAL DATUGHT	0.4				1 0	10	1000	A
	an Ex.			71		90	44	14.	AA
	ve.			71	1	>	74	55	A.s.
		برولى التوالح	ي. ليسامس	۲۸		×.	41	· ()	150

مما بيح التوهيج ومصا بيح الفلورسيت

مهاسح النوهج

	ہمیمے! لل			9	: *
و ٢٩ قولت	عاد قولت	١١٠ قرلت	القط	الك	التسة
۱۹۰ قولت ملغ <i>ه مندوج</i>	ملك معرد	ملف مفرد	-	مما	وات
E-creek Landsoniae	5.,		THE RESIDENCE OF THE	Name and Address of the	50
	450			1. 4	
	oYa		٦.	1.0	٦.
	117-		7.	1.0	1
	Managara and St.			150	34
5- 2-		-	ZA	157,0	100
	193.	25	. A.	17.	
**********	svs.	758-	Α.	171,0	5.0
	£7				
	. A	19.	110	TTT -	D
	198:-				
	1Y7		10.	Y	1
-	SYD	-	14.	774	Sain

ب- اشرح طريقة عمل الارضيات التراتزو مع توضيح إجابتك باسكتشات. (١٠ درجات)

برنامج الهندسة المدنية مقرر الاتشاء المعماري (A1۰۱) الفرقة الاولى - لاتحة ٢٠٠٤ الزمن: ٣ ساعات النهاية العظمى: ١٠٠ درجة

كلية الهندسة قسم الهندسة المعمارية امتحان نهاية القصل الدراسي الثاني ٢٠١٥/٢٠١٤ – يونيو ٢٠١٥/٢٠١٤

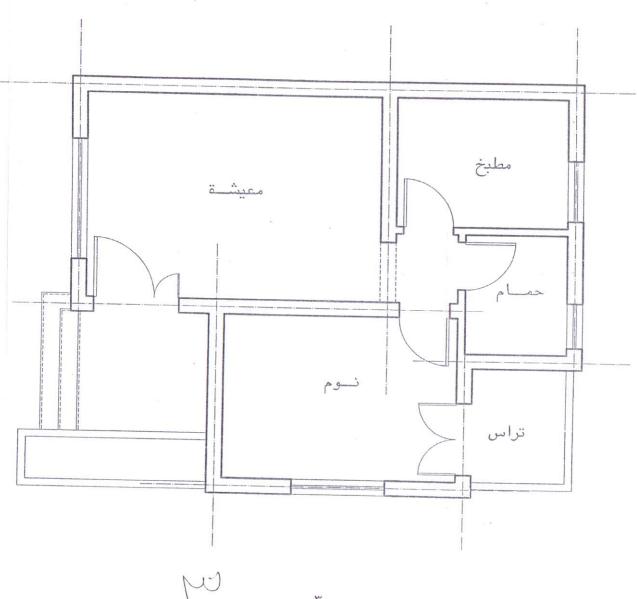
• الإمتحان يقيس مهارات (٣ & ١٤١ & ج١٠ & ج١٠ . ه ج١٠ ملاحظات
• الأجابة تتم في ورقة الاسئلة ويجب مراعاة الدقة ونظافة الرمنومات.
• وضح إجابتك باسكتشات كلما أمكن.
• الامتحان في اربعة ورقات مقاس BT.
• الذقة في الرسم ونظافة اللوحة عامل موثر في الدرجة

(۲۰ درجة)

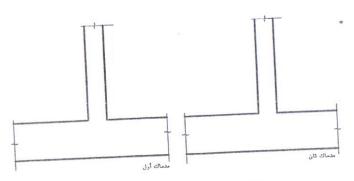
الســؤال الأول:

(۱۰ درجات)

أ- ذكر الفرق بين (مع توضيح اجابتك بالرسم كلما أمكن ذلك):
 أنواع المبانى سابقة التجهيز الخطية والمستوية والصندوقية.


- مصطلح الكمرات المعتبة والكمرات المخدمة.

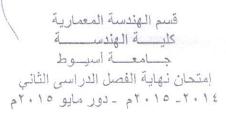
(۱۰ درجات)	ج- اذكر مع الرسم بكروكيات:	(۳۰ درجة)	الســؤال الثاني:
ات السطحية (لكل نوع رسمة واحدة فقط)	- أنواع الاساسات السطحية (لكل نوع رسمة واحدة فقط)	(۱۰ درجات)	أ-عرف المصطلحات الآتية:
			الطية:
			بئر السلم:
			مفتاخ العقد:
			تنفيخ العقد:
		<u>*</u>	الفانوس:
	 أنواع الطبقات العازلة. 	(۱۰ درجات)	ب-ماهى اشتراطات البناء بالاحجار:
ě			-0


Children's Could be the Could be the State State

السوال الثالث: يبين الرسم التالي مسقطا افقيا الشالية مكون من دور واحد - والمطلوب اكمال المسقط الافقى التالي ليصبح رسما تنفيد ذيا. (مقياس الرسم ١/ ٥٠) (٢٥ درجة)

(ا) ارسم الواجهة الامامية للشاليه مبينا عليها كافة الابعاد والبيانات بمقياس رسم ١٠٥٥ (١٠ درجات)

ج-يبين الرسم التالى مسقطا افقيا لمدماكين متتاليين في حائط والمطلوب استكمال رسم المسقطين (مقياس الرسم ٢٠/١) (٥ درجات)



حائطين متعامدين سمك طوبة على نصف طوبة

مع خالص تمنياتنا لكم بالتوفيق والنجاح ,,,,,,, كل معمد عبد الوهاب العزازي واللجنة كرمحمد عبد الوهاب العزازي واللجنة

(ب) ارسم تقصيلية الفاصل انشاتي بين مبنيين احدهما مستمر والاخر منتهي على أن تحتوي التفصيلية على النهائية على النهائي الأحدهما والسقف الاوسط للمبنى الأخر مع إظهار كافة الطبقات على الرسم و كتابية انواعها ومقاساتها. (مقياس الرسم ١٠/١)

برنامج الهندسة المعمارية مقرر الظل والمنظور هعم ١٢٦ ٨ الفرقة الأولى - لائحة ٤٠٠٤ الزمن: ٤ ساعات الدرجة: ٧٠ درجة

ملاحظات هامة

الإمتحان يقيس مهارات أ. ١ مفاهيم ونظريات الرياضيات والعلوم الملائمة لتخصص الهندسة المعمارية. أ. ٢٠ النمذجة المادية، والتخيل متحدد الأبعاد ، وتطبيقات الوسائط المتحددة ، والتصميم بمساعدة الحاسب ، ب، ١٠ التفكير ثلاثي الأبعاد وربط صور الأماكن والأوقات مع الابتكار والإبداع في اعداد التصميم. ج. ٦ إستخدام مدى واسع من الأدوات التحليلية والتقنيات والتجهيزات والحزم البرمجية المرتبطة بالهندسة المعمارية وتطوير برمجيات الحاسوب المطلوبة. ج ١٨ اظهار الخيال والإبداع د. ٢ العمل في بيئة ضاغطة وضمن قيوذ

• الإمتحان مكون من ثلاثة أسنلة في أربعة ورقات (ورقة الأسنلة وثلاثة لوحات).

• الدقة في الرسم ونظافة اللوحة عامل مؤثر في الدرجة وللطالب الحرية في استخدام الألوان والأوراق الملونة والخامات.

الصق الورقة رقم (٣) الخاصة بالانعكاس والورقة رقم (٤) والخاصة بالظل في المستويات ثنائية البعد وثلاثية الأبعاد بعد رسم المطلوب فيها في اوحة الاجابة.

أجب عن الأسئلة التالية

السوال الأول (٣٥ درجة):

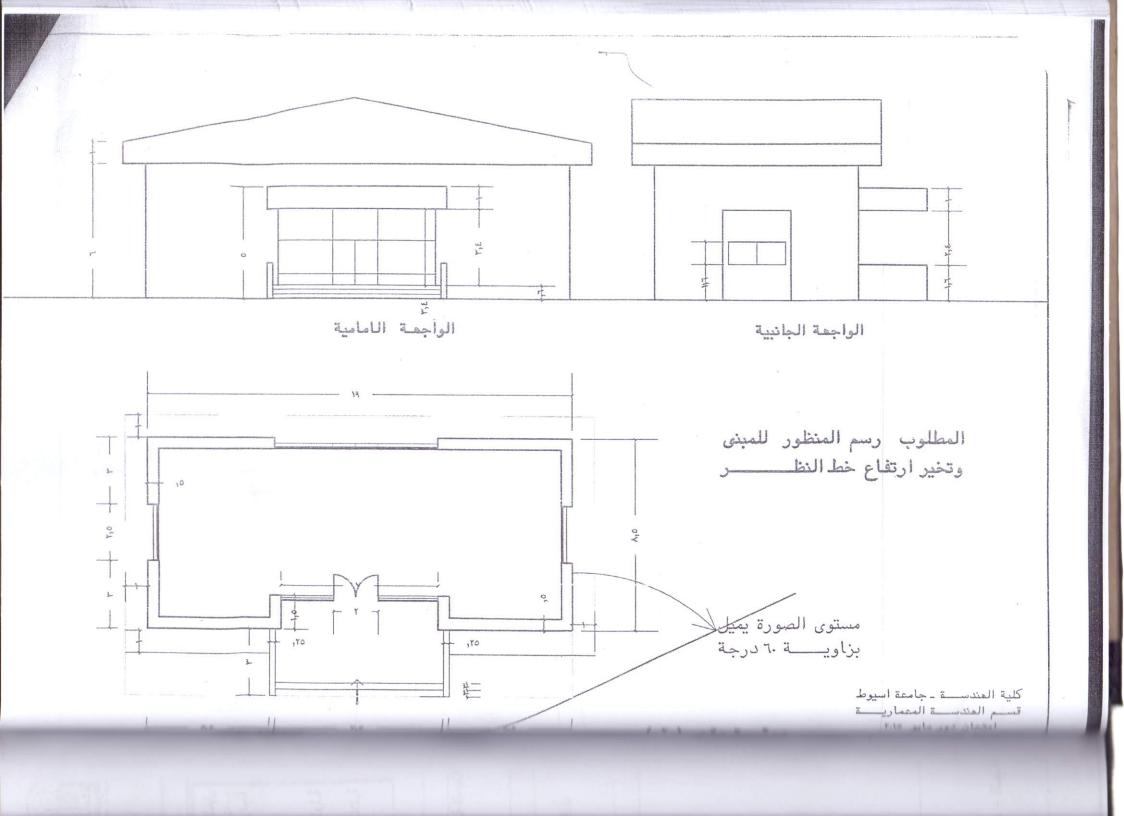
أمامك رسم معماري لمبنى كما هو موضح بالورقة رقم (٢). والمطلوب رسم المنظور الخارجي من الجهة المبينة بالشكل وبإرتفاع خط النظر المناسب.

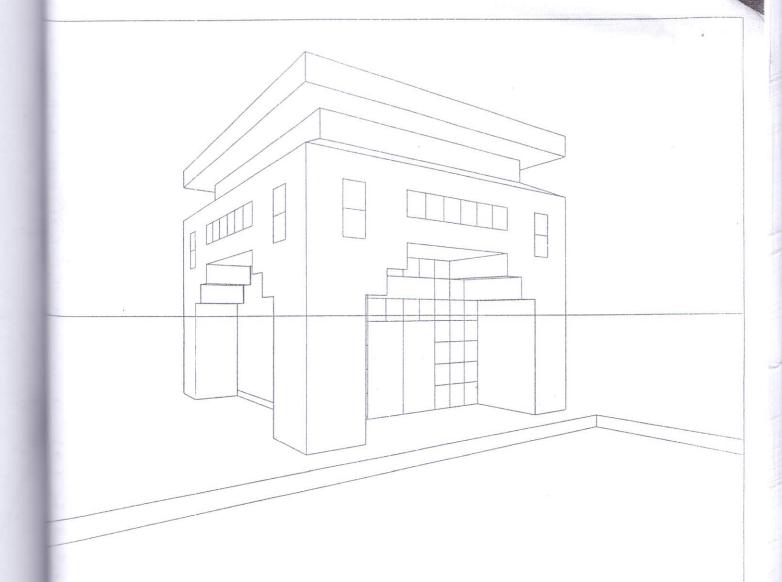
السوال الثاني (١٥ درجة):

أمامك في الورقة رقم (٣) منظور لمبنى يطل على بحيرة، والمطلوب رسم انعكاس هذا المبى على مستوى سطح الماء.

السؤال الثالث: (٢٠ درجة):

في الورقة رقم (٤) المطلوب رسم ما يلي ثم لصق الورقة في لوحة الاجابة: أ- الظل على المستويات الأفقية والرأسية للتمرين رقم (س) ب- الظل على المجسمات الأربعة الموضحة رقم (ص)

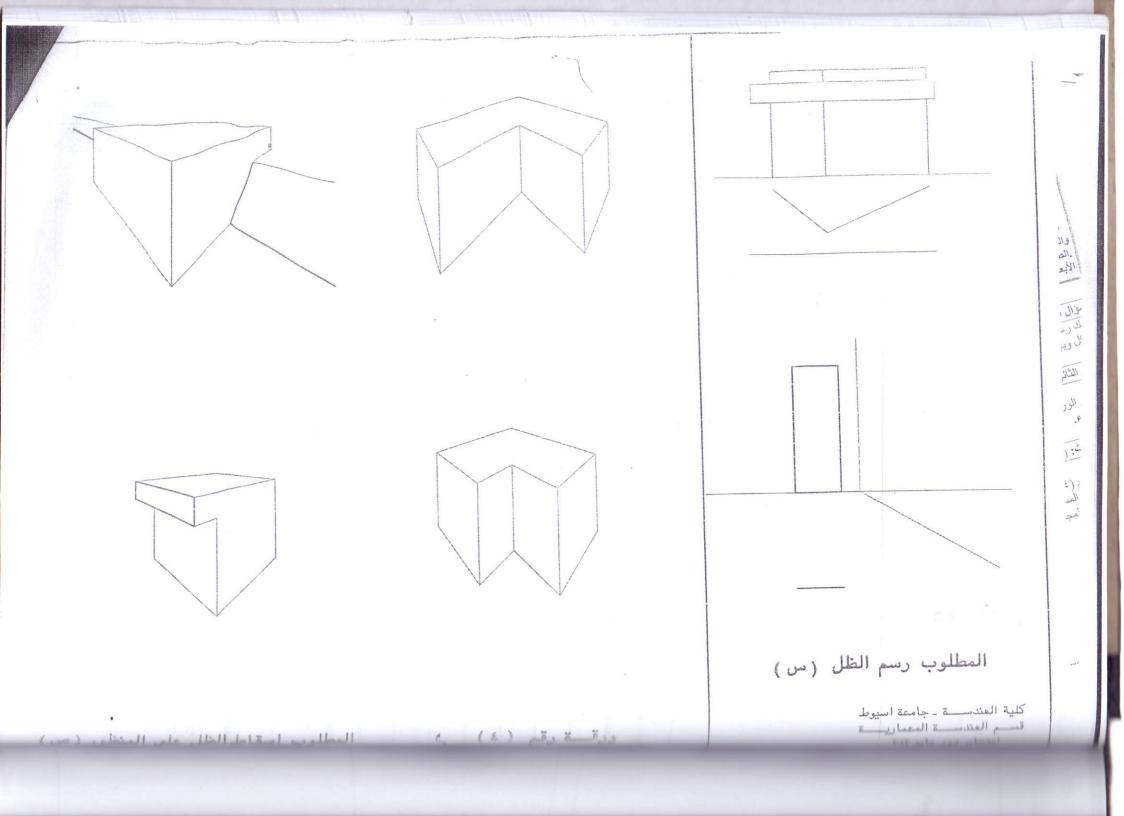

(۱۰ درجات) (۱۰ درجات)


ورقة رقم (١)

--إنتهت الأسنلة---

مع تمنياتنا بالنجاح والتوفيق،،،،

د.م. ممدوح علي يوسف + اللجنة



مادة الظل والمنظور المطلوب رسم الانعكاس

hi

ورقــة رقم (٣)

كلية الهندســة ـ جامعة اسيوط قسـم الهندســة المعماريــة امتحان دور مايو ٢٠١٢

rks: max. 100

should be lity to the

G) on the ed stage? f concrete

gth of 300

d on the

 10 kg/cm^2 ,

it to carry the cross-

r stirrups

Assiut University Faculty of Eng. Electrical Eng. Dept. 2nd Semester-Final Exam 1st year - Mining and Marks: 60 26/05/2015

E102: Computer Metallurgical Eng. bylaw 2004 Time: 3 Hours

. The Exam consists of 5 questions on 6 pages plus two white pages.

Important

- Answers should be in the specified area only.
- · You can use the white page for drafts
- · Read the questions carefully.

Question no. 1 (19 points).

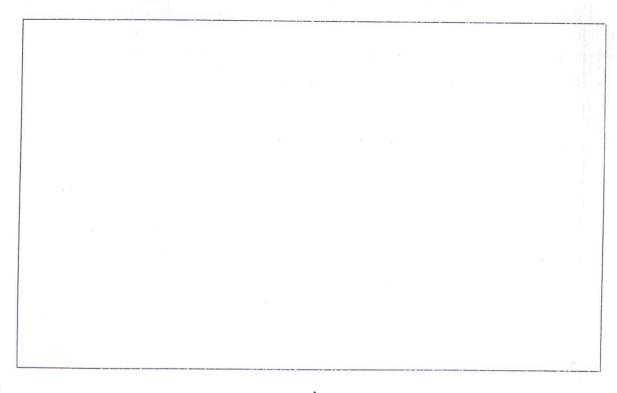
a) (6 pt) Determine whether the following statements are true or false. (In the box write just "√" or "X")

1	The $\gg clc$ command erases all variables in the workspace while the $\gg clear$	
	command clears all commands from the command window.))
2	The following is acceptable as a variable name: 2x.	
3	In an input prompt: $x = input('What is your name?')$ You Must enter your name as a letters.	
4	For any vector A , $(A * A)$ will give the same results as $(A * A)$.	
5	Workspace variables cannot be saved and they are deleted completely when ending the MATLAB session and cannot be retrieved.	
6	The symbol % designates a comment which is not executed by MATLB.	
7	The "for" loop is used when the looping process must terminate when a specified condition is satisfied and thus the number of passes is not known in advance.	
8	The semicolon (,) suppresses output when used with MATLAB commands and (;) terminates the MATLB line.	
9	The Transpose command (<i>trans</i>) interchanges the rows and columns of a matrix and (<i>inv</i>) produces the inverse of the matrix.	
10	The disp command displays string during program execution while echo command displays array or string.	2
11	The \gg <i>eye</i> (2,5) produces an identity matrix with 2 rows and 5 columns.	
12	The >> repmat(3,3,3) produces a square matrix with 3 rows and 3 columns and all elements value is 3.	

b) (7 pt) For a = 2, b = 3, c = 4 and d = 5 Determine which of the following statements will correctly execute and provide the result. If the command will not correctly execute, state why it will not.).

Statement	Correct or incorrect	Result: if it is correct or Why if it is incorrect	2
X1=2*b*sin(c*d)*cos(a*b)	medirect	why if it is incorrect	
X2=a*b*tan(c*d)*exp(ab)			5 10
X3=log(a*b)*ln(a*b)*sqrt(2*a)			
X4=2*c*d*tanh(a)*acos(b)*b*sin(a)			
X5=a*b*s*d*(sqrt(c*d+a+b)			
X6=a*d*c*asin(1/b)*acos(1/b)*d			
X7=a^2*b^3*d^4*C^5			

c) (6 pt) For the vector X=[5 1 3 2 6 8 9 7]. Find the value of the following Logical Expression.


Logical Expression	Value
X1=X(X<=9)	
X2=X([2:end-2])	
X3=X(X ~=8)	
X4=[X(1:4) X (end-2:end)]	
X5=[X(2:-1:1) X (end-1:end]	
X6=X(X<=3)	

Question no. 2 (12 points).

a) (7 pt) (Let $x = [1 \ 4 \ 8]$, $y = [2 \ 1 \ 5]$, $A = [3 \ 1 \ 6; 5 \ 2 \ 7]$ and B = [3;6;4]. Determine which of the following statements will correctly execute and provide the result. If the command will not correctly execute, state why it will not.).

Statement	Correct or incorrect	Result: if it is correct or Why if it is incorrect	Į.
x + y			
$x + \dot{y}$			
x ·* y			
x ·* ý			
x * B			
A * B			
y * B			

b) (5 pt) Write a MATLAB code to plot the function $T = 6 \ln(t) - 7e^{0.2t}$ over the interval $1 \le t \le 5$. Put a title on the plot and properly label the axis where T represents the temperature, °C and t represents time, min.

Page 3 of 6_

Question no. 3 (10 points).

a) (5 pt) Write a script file using conditional statements to evaluate the following assuming scalar x has a value;

$$y = \begin{cases} x^2 & x < -1 \\ 2 & -1 \le x \le 1 \\ x+5 & 1 < x \end{cases}$$

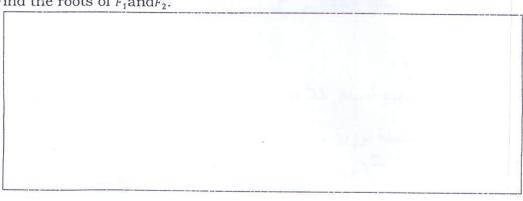
b) (5 pt) Write a MATLB code to create a square matrix (NxN). The matrix has diagonal elements equal N^3 and all the other elements equal N^2 . The input to the code is the number of element N and the output is the matrix in the matrix form.

Question no. 4 (10 points).

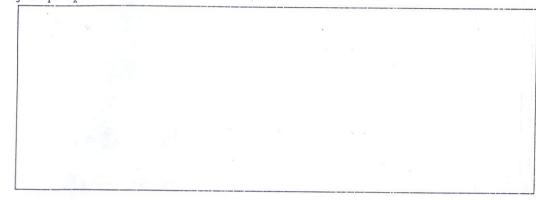
a) (5 pt) Use a MATLAB code to solve the following set of equations:-

$$3x + 2y - z = 1$$

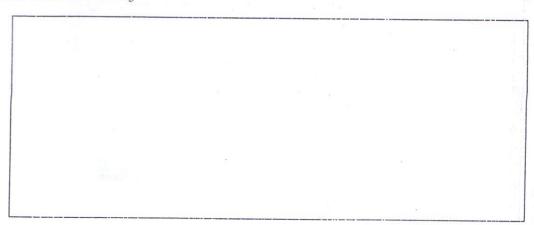
$$2x - 2y + 4z = -2$$


$$-x + 0.5y - z = 0$$

b) (5 pt) Write a MATLB code to find the factorial of any number (N). The input to the program is the number N and the output is the factorial of the number (do not use the factorial commands).


170				The second secon	_
Question	no.	5	9	points	١

For the following two polynomials $F_1 = 2x^4 - 5x^2 + 12x - 73$ and $F_2 = x^2 + 3x - 9$ Write a MATLAB commands to;


i. Find the roots of F_1 and F_2 .

ii. $F_3 = F_1 * F_2$

iii. The derivative of F_3 .

Best Wishes

Dr: Ali Younis

المادة: تاريخ مصر الاقتصادي

الفرقة: الأولى (جميع الشعب)

الزمن: كان

النهاية العظمى: ﴿ ﴿ ﴿ رُكُ

كلية الآداب قسم الهندسة

امتحان الفصل الدراسي الثاني ١٤٠١ - ٢٠١٥ م

أجب عن سؤالين فقط مما يأتي:

السؤال الأول: اكتب ما تعرفه عن سياسة الأحتكار في عهد محمد علي.

السؤال الثاني: تناول بالعرض والتحليل السياسة الاقتصادية في العهد العثماني في مصر .

السؤال الثالث: اشرح السياسة الاقتصادية للخديو إسماعيل.

السؤال الرابع: تناول بالشرح الاقتصاد المصري في العهد الملكي .

انتهت الأسئلة مع تمنياتي بالتوفيق والنجاح

د. محمد سعد الدين د. حامد مشهور المادة: تاريخ مصر الاقتصادي

الفرقة: الأولى (جميع الشعب)

الزمن: كاكثات

النهاية العظمى: ﴿ ﴿ ﴿ ﴿ ٥٠

كلية الآداب قسم الهندسة

امتحان الفصل الدراسي الثاني ١٤٠١ - ٢٠١٥ م

أجب عن سؤالين فقط مما يأتي:

السؤال الأول: اكتب ما تعرفه عن سياسة الاحتكار في عهد محمد علي.

السؤال الثاني: تناول بالعرض والتحليل السياسة الاقتصادية في العهد العثماني في مصر .

السؤال الثالث: اشرح السياسة الاقتصادية للخديو إسماعيل.

السؤال الرابع: تناول بالشرح الاقتصاد المصري في العهد الملكي .

انتهت الأسئلة مع تمنياتي بالتوفيق والنجاح

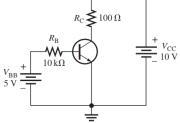
د. محمد سعد الدين د. حامد مشهور

EE0513-ELECTRONIC CIRCUITS

Mid Term Exam

Time: 1.5 Hours

Model Answer


Attempt all questions, full mark: 20

Question #1 [6 Points]

Choose the right answer:

- 1) If a transistor with higher β_{dc} is used in the circuit shown, The base current will
- (A) increase \mathbf{C} (C) not change

(B) decrease

- 2) In a certain voltage-divider biased npn transistor, V_B is 2.95 V. The dc emitter voltage is approximately
- (A) 0.7 VВ

(B) 2.25 V

(C) 2.95 V

- (D) 3.65 V
- For operation as an amplifier, the base of an npn transistor must be 3)
- (A) positive with respect to the emitter A
- (B) negative with respect to the emitter
- (C) positive with respect to the collector
- (D) 0 V
- 4) For a common-emitter amplifier, $R_C = 1 \text{ K}\Omega$, R_E is completely bypassed at the operating frequency, $r_e'=15 \Omega$, and $\beta_{ac}=75$. The magnitude of the voltage gain is
- (A) 66.7A

(B) 2.56

(C) 2.47

- (D) 75
- 5) For a common-collector amplifier, $R_E = 100 \Omega$, $r_e' = 10 \Omega$, and $\beta_{ac} = 150$. The ac input resistance at the base is
 - (A) 1500Ω

(B) 15Ω

D (C) 110Ω

- (D) $16.5 \text{ K}\Omega$
- In a voltage-divider biased npn transistor, if the upper voltage-divider resistor (the one connected to V_{CC}) opens,
 - (A) the transistor goes into cutoff
- (B) the transistor goes into saturation
- A (C) the transistor burns out
- (D) the collector current will decrease

Question #2 [4 Points]

Give the right answer:

a) In a Darlington pair configuration, each transistor has $\beta_{ac} = 80$. If R_E is 330 Ω . Find the input resistance.

$$R_{in} = \beta_{ac}^2 R_E$$
$$= 2.1 \text{ M}\Omega$$

b) A differential amplifier stage has collector resistors of 5.1 K Ω each. If $I_{C1} = 1.35$ mA and I_{C2} = 1.29 mA, what is the differential output voltage?

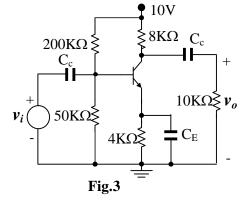
$$V_o = (I_{C1} - I_{C2}) R_C$$

=0.306 V

Model Answer

Question #3 [5 Points]

The silicon npn transistor used in the common emitter amplifier in Fig.3 has $_{dc} = _{ac} = 100$.

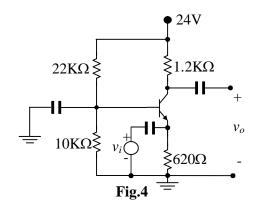

a) Find I_{CQ} and V_{CEQ} .

(2 Points)

b) Find r_e '.

(1 Point)

c) Find the voltage gain and input impedance of the amplifier. (2 Points)


$$I_{CO} = 0.3 \text{ mA}$$

$$A_{\rm v} = -54$$

Question #4 [5 Points]

The silicon *npn* transistor used in the common base amplifier of Fig.4 has $_{dc} = _{ac} = 200$ and $r'_{e} = 2.4 \Omega$ at the operating point.

- a) Draw the r-parameter ac-equivalent circuit of the amplifier. (2 Points)
- b) Find the voltage gain, current gain and input impedance of the amplifier. (3 Points)

$$A_v =$$
 500

$$A_i = \begin{bmatrix} 0.995 \end{bmatrix}$$

$$Z_{in} = 2.39 \text{ h}$$

التمنيات بالتوفيق **********

أ.د. مجدى مفيد دوس

 \mathbf{C}

Assiut University
Faculty of Engineering

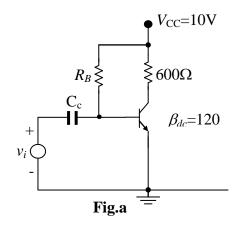
EE0513-ELECTRONIC CIRCUITS First Term Final Exam

Mechatronics Program

January 2014 Attempt all questions, full mark: 40 Points Time: 3 Hours **Question #1: (10 Points)** Choose the right answer: The overall voltage gain of three identical cascaded voltage amplifiers each has a no load 1) voltage gain $A_V = -10$, $Z_i = 1 \text{ k}\Omega$, and $Z_o = 1 \text{ k}\Omega$ is: (A) 1000 (B) -1000 \mathbf{C} (C) -250(D) -1252) In cutoff, $V_{\rm CE}$ is (A) 0 V(B) minimum \mathbf{C} (C) equal to V_{CC} (D) equal to $V_{CC} - 0.7V$ 3) In saturation, V_{CE} is (A) 0.7 V(B) minimum В (D) maximum (C) equal to V_{CC} 4) The peak current a class A power amplifier can deliver to a load depends on the (A) maximum rating of the power supply (B) quiescent current В (C) current in the bias resistors (D) size of the heat sink 5) Crossover distortion is a problem for (A) class A amplifiers (B) class AB amplifiers \mathbf{C} (C) class B amplifiers (D) all of these amplifiers **6**) For maximum output, a class A power amplifier must maintain a value of quiescent current that is (A) one-half the peak load current (B) twice the peak load current A (C) just above the cutoff value (D) at least as large as the peak load current **7**) At cutoff, the JFET channel is (A) at its widest point (B) completely closed by the depletion region В (D) reverse-biased (C) extremely narrow 8) A MOSFET differs from a JFET mainly because (A) of the power rating (B) the MOSFET has two gates \mathbf{C} (C) the JFET has a pn junction (D) MOSFETs do not have a physical channel A JFET always operates with 9) (A) the drain connected to ground (B) the gate-to-source *pn* junction reverse-biased В (C) the gate connected to the source (D) the gate-to-source pn junction forward-biased

10) A certain D-MOSFET is biased at $V_{GS} = 0$ V. Its datasheet specifies $I_{DSS} = 20$ mA and $V_{GS(off)} = -5$ V. The value of the drain current

(A) is 0 A (B) is 10 mA


(C) is 20 mA (D) cannot be determined

Model Answer Page 2 of 4

Question #2: (10 Points)

a) Assume that you wish to bias the transistor in Fig.a with I_C = 8 mA. Find R_B .

$$I_B = I_C/\beta_{dc} = 66.7 \ \mu A$$
 $R_b = (V_{CC} - V_{BE})/I_B = 139.5 \ \mathrm{K}\Omega$

b) In a common-emitter amplifier with voltage-divider bias, $R_{in(base)}$ = 68 KΩ, R_1 = 60 KΩ, R_2 = 30 KΩ. Find the total ac input resistance

$$R_{in} = R_{in(base)} // R_1 // R_2$$

$$= 15.45 \text{ K}\Omega$$

c) A differential amplifier has a differential mode gain A_d = 80 and a common mode gain A_c = 0.5. Calculate the CMRR in dBs.

$$CMRR = 20 \log (A_d/A_c)$$

$$= 44 dBs$$

d) An n-channel E-MOSFET has $I_{D(on)} = 18$ mA at $V_{GS} = 4$ V, and $V_{GS(th)} = 2.5$ V. Find I_D when $V_{GS} = 3.25$ V.

$$I_D = k (V_{GS} - V_{th})^2$$

$$k = 8 \text{ mA/V}^2$$

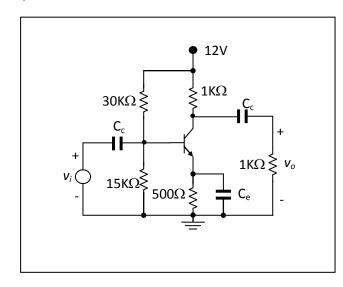
$$I_D = 4.5 \text{ mA}$$

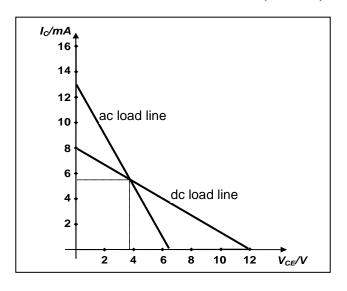
e) In a certain common-source (CS) amplifier, $R_D = 1.0 \text{ k}\Omega$, $R_S = 560 \Omega$, $V_{DD} = 10 \text{ V}$, and $g_m = 4500 \,\mu\text{S}$. If the source resistor is completely bypassed. Find the voltage gain.

$$A_{v} = -g_{m} R_{D} = -4.5$$

Question #3: (8 Points)

A CE amplifier uses a silicon npn-transistor having $\beta_{dc} = \beta_{ac} = 100$ and has $R_C = 1 \text{ k}\Omega$, $R_E = 500 \Omega$ and $V_{CC} = 12$ volts, is biased by a voltage divider with $R_1 = 30 \text{ k}\Omega$ and $R_2 = 15 \text{ k}\Omega$. A 1 k Ω resistive load is connected through coupling capacitor to the collector terminal, and R_E is bypassed by C_E .


a) Draw the amplifier circuit diagram (1 Point)


b) Find I_{CQ} and V_{CEQ} . (2 Points)

c) Find $\mathbf{r}'_{\mathbf{e}}$. (1 Point)

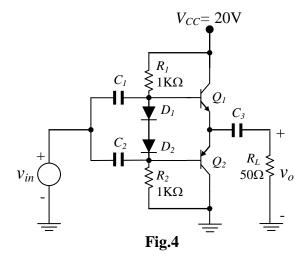
d) Find the voltage gain, current gain and input impedance of the circuit. (2 Points)

e) Sketch the dc and ac load lines (2 Points)

$$I_{CQ} =$$
 5.5 mA

$$V_{CEQ} = 3.75 \text{ V}$$

$$r'_e = 4.55 \,\Omega$$


$$A_{\nu} =$$
 - 110

$$Z_{in} =$$
 439 Ω

Question #4: (4 Points)

The class AB amplifier in Fig.4 is operating with a single power supply.

- Assuming the input peak-to-peak voltage is 10
 V; determine the power delivered to the load resistor and the amplifier efficiency. (2 Marks)
- b) What is the maximum power that could be delivered to the load resistor? (1 Mark)
- c) Assume the power supply voltage is raised to 30 V. What is the new maximum power that could be delivered to the load resistor? (1 Mark)

a)
$$P_{LD} = \boxed{0.25 \text{ W}}$$

b)
$$P_{LD(max)} = 1 \text{ W}$$

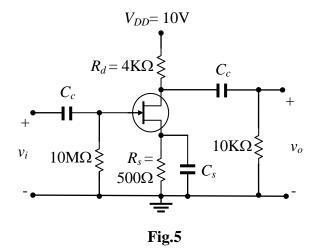
c)
$$P_{LD(max)} = \boxed{2.25 \text{ W}}$$

Question #5: (8 Points)

The JFET used in the circuit shown in Fig.5 has $I_{DSS} = 4 \text{ mA}$, and $V_{GS(off)} = -2 \text{ volts}$. Find:

a) The Q-point parameters (V_{GSQ} , I_{DQ} , and V_{DSQ}).

(3 points)


b) The forward transconductance g_m at the Q-point.

(1 point)

c) The voltage gain, input and output resistances.

(2 points)

d) If it is desired to bias the above FET at the midpoint of its transfer characteristics ($I_D = I_{DSS}/2$) and at $V_{DS} = V_{DD}/2$. Find the new values of R_s and R_d . (2 points)

a)
$$V_{GSQ} = \begin{bmatrix} -0.76 \text{ V} \end{bmatrix}$$

$$I_{DQ} =$$
 1.53 mA

$$V_{DSQ} =$$
 3.12 V

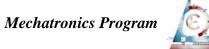
b)
$$g_m = 2.47 \text{ mS}$$

c)
$$A_{v} = -7.1$$

$$Z_{in} = 10 M\Omega$$

$$Z_{out} = 4 \text{ K}\Omega$$

d)
$$R_s = \begin{bmatrix} 294 \Omega \end{bmatrix}$$


$$R_d =$$
 2.2 K Ω

Model Answer Page 1 of 5

Assiut University Faculty of Engineering

EE0513-ELECTRONIC CIRCUITS

First Term Final Exam January 2015

(A) High gain(C) High input impedance

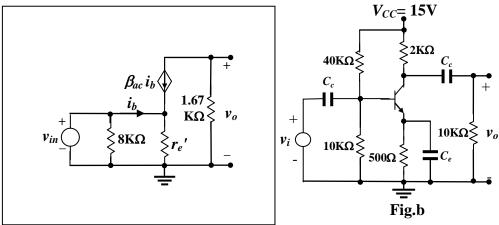
B

Atte	empt all questions, full mark: 40 Points	Time: 3 Hours
Que	estion #1: (10 Points)	
	oose the right answer:	
1)) If a sinusoidal voltage is applied t sinusoidal collector voltage is clippe	o the base of a biased npn transistor and the resulting ed near zero volts, the transistor is
A	(A) being driven into saturation (C) operating nonlinearly	(B) being driven into cutoff
2)	The input resistance of a common-k	pase amplifier is
A	(A) very low (C) the same as a CE	(B) very high(D) the same as a CC
3)	The voltage gain of a common-base	amplifier is
	(A) very low (C) the same as a CE	(B) very high(D) the same as a CC
4)	The input resistance at the base of a	a biased transistor depends mainly on
Ι	$ \begin{array}{c c} \hline \mathbf{O} & (A) \beta \\ (C) R_B \end{array} $	(B) R_E (D) β and R_E
5)	A differential amplifier	
Ι	(A) is used in op-amps (C) has two outputs	(B) has one input and one output(D) answers (A) and (C)
6)	The maximum efficiency of a class	A power amplifier is
A	(A) 25% (C) 75%	(B) 50% (D) 78.5%
7	Crossover distortion is a problem fe	or
(C (A) class A amplifiers (C) class B amplifiers	(B) class AB amplifiers(D) all of these amplifiers
8)	For V_{GS} = 0, the drain current in a J	FET becomes constant when V_{DS} exceeds
(C (A) cutoff (C) V_P	(B) V_{DD} (D) 0 V
9)	A certain n-channel E-MOSFET ha	as a $V_{GS(th)}$ = 2V. If V_{GS} = 0 V, the drain current is
A	(A) 0 A (C) maximum	(B) $I_{D(ON)}$ (D) I_{DSS}
10	0) Which of the following characterist	ics does not necessarily apply to an op-amp?

(B) Low power

(D) Low output impedance

Question #2: (5 Points)


a) A certain transistor has α_{DC} = 0.99. If the dc base current is 10 μ A, determine r_e' .

$$\beta = \alpha/(1-\alpha) = 99$$

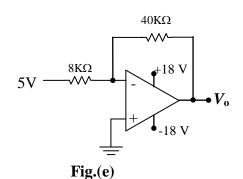
$$I_E = (\beta + 1)I_B = 1 \text{ mA}$$

$$r_e' = 25/I_E = 25 \Omega$$

b) Draw the ac equivalent circuit for the amplifier in Fig.b

c) An n-channel JFET has $I_{DSS} = 5$ mA and $V_{GS(off)} = -8$ V. What value of V_{GS} is required to set up a drain current of 2.25 mA.

$$I_D = 5[1 - V_{GS}/(-8)]^2 = 2.25$$

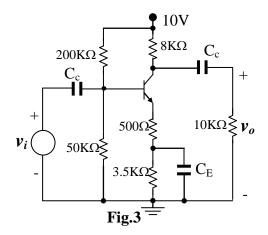

$$V_{GS} = -2.63 \text{ V}$$

d) A certain class A power amplifier has V_{CEQ} = 12 V and I_{CQ} = 1A. Find the maximum signal power output.

$$P_{out(max)} = V_{CEQ}I_{CQ}/2$$
$$= 6W$$

e) Find V_o in the circuit of Fig.(e).

$$V_o = -18 \text{ V}$$



Model Answer Page 3 of 5

Question #3: (5 Points)

The silicon npn transistor used in the swamped amplifier shown in Fig.3 has $\beta_{dc} = \beta_{ac} = 100$.

- a) Find I_{CQ} and V_{CEQ} .
- b) Find r_e .
- c) Find the voltage gain and input impedance of the amplifier.

$$I_{CQ} = 0.295 \text{ mA}$$

$$A_{\rm v} = -7.6$$

$$V_{CEQ} = 6.45 \text{ V}$$

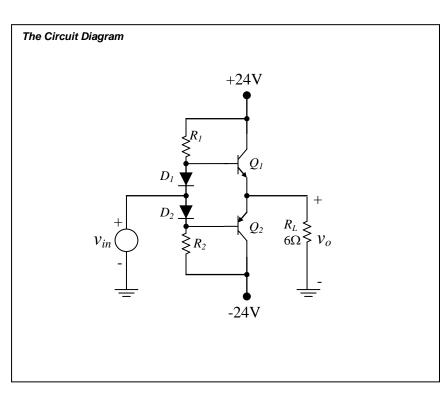
$$Z_{\rm in}$$
= 23.75 K Ω

$$r_{\rm e}$$
'= 84.6 Ω

Question #4: (5 Points)

A class-AB complementary-symmetry push-pull power amplifier is connected to a 6 Ω load. The supply voltages are ± 24 V.

a) Draw the amplifier circuit diagram.


- (1 Point)
- b) Find the peak value of the collector current, the DC power delivered by the source, and the amplifier efficiency if the ac power delivered to the load is 27 W. (3 Points)
- c) What would be the maximum allowable output power?

(1 Point)

$$I_{Cp} = 3 A$$

$$P_{DC} = 45.83 \text{ W}$$

$$P_{\text{out(max)}} = 48 \text{ W}$$

Model Answer Page 4 of 5

Question #5: (5 Points)

The JFET used in the common source amplifier of Fig.5 has $V_{GS(off)} = -5$ V and $I_{DSS} = 10$ mA.

- a) Determine the operating point I_{DQ} , V_{GSQ} and V_{DSO} . (3 Points)
- b) Calculate the value of the transconductance g_m at the Q-point. (1 Point)
- c) Determine the amplifier voltage gain.

(1 Point)

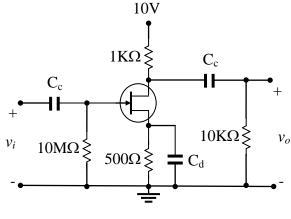


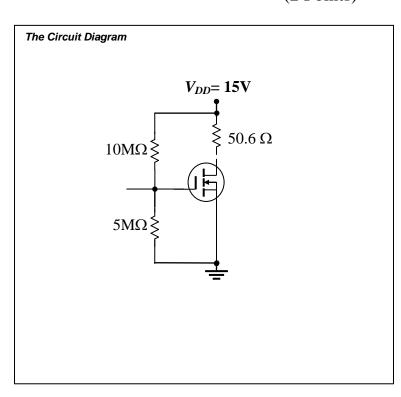
Fig.5

$$I_{DQ} = 3.82 \text{ mA}$$

$$V_{\rm GSQ} = -1.91 \text{ V}$$

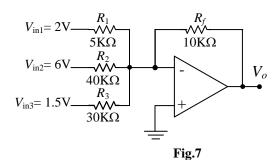
$$V_{\rm DSQ} = 4.27 \text{ V}$$

$$g_{\rm m}$$
= 2.47 mS


$$A_{\rm v}$$
= -2.247

Question #6: (3 Points)

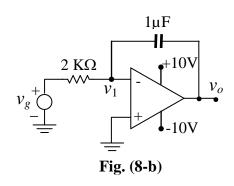
- a) The data sheet for a 2N7008 E-MOSFET gives $I_{D(\text{on})} = 500$ mA at $V_{GS} = 10$ V and $V_{GS(th)} = 1$ V. Determine the drain current for $V_{GS} = 5$ V. (1 Point)
- b) The transistor is to operate at: $V_{GSQ} = 5 \text{ V}$, $V_{DSQ} = 10 \text{V}$. Draw a suitable circuit to bias this transistor giving suitable resistances values, assuming that $V_{DD} = 15 \text{ V}$.

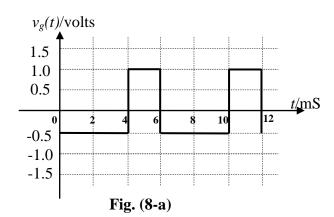

(2 Points)

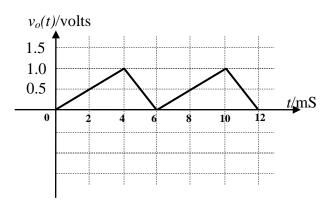
$$I_{\rm D} = 98.765 \, \text{mA}$$

Question #7: (3 Points)

- a) Find the output voltage when the indicated input voltages are applied to the scaling adder of Fig.7. (2 Points)
- b) What is the value of the current through R_f ? (1 Point)




$$V_{\rm o}$$
= -6 V


$$I_f = 0.6 \text{ mA}$$

Question #8: (4 Points)

The voltage waveform v_g shown in Fig.(8-a) is applied to the circuit of Fig.(8-b). Sketch v_o versus t, assuming ideal op-amp.

