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ABSTRACT

In cardiovascular flows, Lagrangian coherent structures have been used to explore the skeleton of blood transport. Revealing these transport
barriers is instrumental to quantify the mixing and stagnation of blood as well as to highlight locations of elevated strain rate on blood
elements. Nevertheless, the clinical use of Lagrangian coherent structures in cardiovascular flows is rarely reported due largely to its non-
intuitive nature and computational expense. Here, we explore a recently developed approach called “Lagrangian descriptors,” which quanti-
fies the finite time Euclidean arc length of Lagrangian trajectories released from a grid of initial positions. Moreover, the finite time arc
lengths of a set of trajectories capture signatures of Lagrangian coherent structures computed from the same initial condition. Remarkably,
the Lagrangian descriptors approach has the most rapid computational performance among all its Lagrangian counterparts. In this work, we
explore the application of Lagrangian descriptors for the first time in cardiovascular flows. For this purpose, we consider two in vitro flow
models studied previously by our group: flow in an abdominal aortic aneurysm and that in a healthy left ventricle. In particular, we will dem-
onstrate the ability of the Lagrangian descriptors approach to reveal Lagrangian coherent structures computed via the classical geometrical
approach, though at a significantly reduced computational cost.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064023

Blood mixing, separation, and stasis in cardiovascular flows can
be better understood by revealing the underlying mechanism or skele-
ton of blood transport.1 This transport skeleton has been obtained in a
variety of cardiovascular flows by extracting coherent structures.1–3

One way to perform such a task is to extract the Lagrangian coherent
structures (LCSs), which describe highly repelling, attracting, and
shearing material lines/surfaces within various time-dependent
flows.4–9 In addition to providing a map of material (blood) transport
within a cardiovascular flow, LCSs can be used to capture the bound-
aries of vortical structures and show how they are transported.2,3,10–16

Furthermore, extracting LCS in blood flows has different applications
such as optimizing and controlling the targeted drug delivery,15 to
examine the effectiveness of diverter stent on patients with intracranial
aneurysm,17 to predict the growth of abdominal aortic aneurysm
(AAA).18 Moreover, Shadden and Taylor1 suggest that a higher degree
of stirring and mixing is associated with a more complex distribution

of LCSs within a given flow region. They also found a correlation
between the boundary of stagnant flow and a repelling LCS within an
idealized model of AAA. Another important application of LCSs relies
on their nature as the most attracting/repelling material surfaces.
Specifically, platelets located on LCSs will experience higher strain
rates, opening the door for their potential activation.3,19

In the literature, several approaches can be used to deduce LCSs
within flows, the more common being geometric, probabilistic, braid-
based, and trajectory-graph based.20–22 Among these approaches, the
geometric approach has been extensively used to define LCSs within
cardiovascular flows. Central to this approach is finding the largest
eigenvalue of the right Cauchy–Green tensor (CGT), which indicates
the maximum amount of stretching at a given initial point in a fluid
domain. Often, the right CGT is computed for a dense grid of particles
with their trajectories being traced between two time instants. Then,
after rescaling the largest eigenvalue field, the finite-time Lyapunov
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exponent (FTLE) field can be used to visualize the LCSs within the
flow. The reader can anticipate that such an approach is computation-
ally expensive as it requires a dense grid of Lagrangian trajectories
along with highly resolved spatial derivatives of the flow map.
Therefore, although the geometric approach (i.e., using the FTLE
fields) can identify the LCS, it has been shown to give a blurry view of
the stable and unstable manifolds of hyperbolic trajectories in oceano-
graphic flows.23

Lagrangian descriptors (LD) is a trajectory-based diagnostic tech-
nique that has emerged as a means of overcoming the computationally
demanding nature of geometric approaches to more easily visualize
LCSs.23–27 According to Mendoza and Mancho,25 a function is pro-
posed as a global LD, where this function evaluates the finite time
Euclidean arc length of a Lagrangian trajectory originating from a given
initial position in the flow. As the attracting and repelling LCSs partition
the fluid into regions with different dynamics, one can expect that the
lengths of the trajectories will witness abrupt changes in their vicinity.25

Moreover, Mancho et al.28 extended LD to include the finite time inte-
gration of scalar properties (either geometrical or physical) along the tra-
jectories. Thus, in fluid flows, the sharp gradient in the Lagrangian
descriptors can deduce the attracting and repelling LCSs.21,29,30

To extract LCSs within cardiovascular flows, the most common
approach has been the geometrical one. A faster LCS detection algo-
rithm would open the door to its application to cardiovascular flows
acquired in a clinical setting via four-dimensional (4D) MRI or echo-
Particle image velocimetry (PIV). It is therefore important to demon-
strate that the LD approach is an excellent candidate for this purpose.
In order to do so, the LD approach is here applied to two cardiovascu-
lar flow fields acquired from experimental in vitro models of flow in a
healthy left ventricle (LV) and that in an AAA. Since the two selected
flows are rich with complex LCSs, we will demonstrate the ability of
the LD approach to extract the same LCSs highlighted by the FTLE
fields. Moreover, we will show the significant computational savings
that the LD approach offers.

Starting with a time-dependent velocity field uðx; tÞ, we place a
set of uniformly spaced passive particles over a grid at a given time t0.

Then, the Lagrangian trajectories are traced by advecting the particles
in time using a fourth-order Runge–Kutta scheme along with a bicubic
spatial interpolation of the velocity fields. By doing so, we ensure an
efficient and accurate computation of the trajectories as reported in
Mendoza et al.27

For a given Lagrangian trajectory that passes through a position
x0 at time t0, the Euclidean arc length of this trajectory, for a given
time interval s, defines the value of the Lagrangian descriptors through
a function Mðx0; t0; sÞ as in Madrid and Mancho.24 Here, we use the
discrete form of M (denoted hereafter as DM) as defined by Lopesino
et al.,29 where the Lagrangian trajectory is defined over 2N þ 1 time
steps, with N 2N. In the literature, Eq. (1) represents the Lagrangian
descriptors for a trajectory i by summing the expressions given by Eqs.
(2) and (3). The forward DM (DMF) is computed for the trajectory
originating from x0 between t0 and t0þ sF while the backward DM
(DMB) is evaluated for the trajectory ending at x0 from t0 � sB to t0,
see panel II in Fig. 1. In this case, if Dt represents the time step
between the investigated velocity fields, the time interval can be
defined as s ¼ NDt. Notably, the following expressions differentiate
between the number of time steps for both forward and backward
computations of theDM:

DMi ¼ DMF
i þ DMB

i ¼
XNF

n¼�NB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxnþ1i � xni Þ

2 þ ðynþ1i � yni Þ
2

q
; (1)

DMF
i ¼

XNF

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxnþ1i � xni Þ

2 þ ðynþ1i � yni Þ
2

q
; (2)

DMB
i ¼

X0
n¼�NB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxnþ1i � xni Þ

2 þ ðynþ1i � yni Þ
2

q
: (3)

The repelling and attracting LCSs can be captured by finding
locations with sharp gradients in the DM contours (as in panel III in
Fig. 1). This can be justified by considering trajectories that start
nearby each other and continue their temporal evolution close to each
other; thus, their Euclidean arc lengths (i.e., DM value) do not vary

FIG. 1. Illustration of the LD approach to extract LCS in cardiovascular flows. Panel (I) shows the initial grid of particles that will be used to trace the Lagrangian trajectories
inside the AAA model. The particles are released at initial time t0, which corresponds to initial velocity field uðx; tÞ0. Panel (II) shows a single Lagrangian trajectory obtained by
tracing the particle forward and backward in time. The trajectory has a colored gradient indicating the value of its Euclidean arc length. Fade color indicates smaller length while
dark blue and dark red indicates higher arc length. In panel (III), the two functions DMF and DMB are evaluated at each initial location. Here, dark red and dark blue indicate
higher trajectory length in forward and backward directions, respectively. In panel (IV), we show the application of the Sobel filter to extract the edge of the DM contours, where
the red and blue edges are aligned with the repelling and attracting LCS, respectively.
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significantly if they belong to a flow region with the same dynamics.
However, at the vicinity of LCS (i.e., separating flow regions with dif-
ferent dynamics), one may expect that the trajectory coinciding with
these structures will witness abrupt change in its DM value relative to
other nearby trajectories, as defined in Ref. 24. Thus, the locations of
sharp color gradient are called singular features of the Lagrangian
descriptors and are aligned with the repelling LCSs (in DMF) and the
attracting LCSs (in DMB).23,29,30 To accurately locate the singular fea-
tures of the DM map, Garc�ıa-Garrido31 suggested using a Sobel filter,
which can identify the edges at locations where the gradient of DM is
maximum. The detected edges are stored in a new two-dimensional
field called EDM “indicating the edge of the DM field” as shown in
panel IV of Fig. 1.

Conceptually, the FTLE field represents the maximum exponen-
tial separation rate of a closely spaced pair of particles being advected
in a flow over a given time interval s. For a fluid domain within a
time-dependent velocity field uðx; tÞ, trajectories xðt; t0; x0Þ are fol-
lowed for a very large number of particles with initial positions x0. The
flow map F t0þs

t0 : xðt0Þ7!xðt0Þ þ
Ð t0þs
t¼t0 uðxðt0Þ; t0 þ sÞdt moves the

particles between their initial and future positions after a time interval
s.32 The right CGT D is then given by Eq. (4), where DF t0þs

t0 denotes
the Jacobian of the flow map. As the CGT measures the amount of
particle separation or material stretching at each initial position, the
maximal stretching is aligned with the eigenvector corresponding
to the maximum eigenvalue kmax of the CGT. The FTLE, as given by

Eq. (5), then corresponds to a rescaling of the maximum eigenvalues
and can be used to visualize LCSs in the flow.

Dt0þs
t0 ðxÞ ¼ DF t0þs

t0

h i�
DF t0þs

t0

h i
; (4)

rs
t0ðx; tÞ ¼

1
2jsj ln kmaxðDt0þs

t0 ðxÞÞ: (5)

The first application of the LD approach, in this study, includes a
model of an AAA. A recently developed in vitro simulator33 generates
a physiological flow inside the AAA model as shown in the left panel
of Fig. 2. The velocity fields are measured using time-resolved planar
particle image velocimetry with a spatial resolution of 0.6mm and a
temporal resolution of 1.9 �10�3 s. Since both the DM and FTLE
fields depend on advecting a set of an initial grid of particles at time t0,
all reported computations use the same fine grid of particles and time
intervals (sF and sB). The initial grid of particles is refined eight times
from the original grid to ensure a high resolution of the reported struc-
tures. The initial release time of the particles is t0 ¼ 0:4, while time
intervals of sB ¼ 0:42 and sF ¼ 0:6 are used for the evaluation of DM
as given by Eqs. (2) and (3), respectively.

The second investigated flow is that inside a model of the LV
where, similar to the AAA case, an in vitro simulator is used to gener-
ate healthy flow conditions as shown in the right panel of Fig. 2.34 The
flow was originally acquired using particle image velocimetry and
reduced-order models have been made available35 with a temporal

FIG. 2. Left panel shows the in vitro setup being used to generate and quantify the flow in the AAA model. The plane of PIV measurements is highlighted in green. A gear
pump generates the flow inside the AAA model, where the pump is driven by a LabVIEW controlled motor. The flow waveform at the inlet of the AAA model is shown in blue
with the initial release time t0 of the particles being indicated by the vertical gray line. In the right panel, we show the in vitro setup that has been used to generate the healthy
flow inside the LV model. The intra-ventricular flow is generated by controlling the pressure inside the hydraulic chamber. This task is done by moving the piston attached to a
LabVIEW controlled linear motor. The inlet velocity profile at the mitral side is shown by the red curve while the initial release time of particles for our investigation is indicated
by the vertical gray line.
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resolution of 2.5 �10�3 s and a spatial resolution of 1.04mm. The ini-
tial grid of advected particles is eight times finer than the original grid
and advection is started at time t0 ¼ 0:62. At this time, the rapid filling
jet becomes clearly present inside the LV. Moreover, the forward and
backward time intervals are different with sB ¼ 0:11 and sF ¼ 0:7.
Notably, using sB > t0 in the AAA and sF > 1� t0 for the LV
requires two cycles for the evaluation of particle trajectories. Thus, the
data set holding the velocity fields for a single cycle has been appended
to itself for both cases. Further details on the selection of s can be
found in the supplementary material.

Figure 3 shows the forward and backward DM, EDM, and FTLE
fields for the AAA and the LV cases at initial time t0. By inspecting the
DMmaps and the FTLE fields, qualitative similarities can be observed.
For instance, in the AAA, the boundaries of the propagating vortical
structures are revealed by the FTLE ridges; see the last row in Fig. 3.
The organization of such structures matches regions with high DM

values (dark red and dark blue) surrounded by fluid regions with sharp
color gradients (toward the white). Notably, the EDMmaps (obtained
via the Sobel filter) closely resemble the FTLE fields. For instance, the
boundaries of the vortex pair identified by the FTLE (computed for-
ward in time) are clearly captured by the EDM. Similarly, the back-
ward EDM field detects various structures that are identified by the
backward FTLE field. For instance, the V-shaped structure descending
from the AAA inlet in addition to the vortical structures are well
detected.

As the LV flow has more complex structures, the DM maps
(both forward and backward) show larger regions defined by sharp
gradients particularly in the DMF map. On the other hand, the DMB

map shows the boundary of the rolling vortex with high descriptor val-
ues surrounded by a spiral of low values. As for the AAA, the EDM
and FTLE fields for the LV case show similarities. For instance, the
edges of the backward EDM field are aligned with the FTLE fields as

FIG. 3. A comparison between the contours of DM, EDM, and FTLE for the two investigated flows. DM represents the contours of the Discrete M function that evaluates the
Lagrangian descriptors. EDM shows the detected edges of DM contours using a Sobel filter. FTLE represents the repelling and attracting LCS for forward and backward finite
time interval. The two columns under the abdominal aortic aneurysm panel are evaluated at t0¼ 0.4, sF¼ 0.42 and sB¼ 0.6. For the LV flow, t0¼ 0.62, sF¼ 0.7, and
sB¼ 0.11. The sharp gradients in the DM contours (A, B, G, H) show clear imprint of the ridges being highlighted in the FTLE fields in (E, F, K, L). The location of sharp
gradients in DM are revealed by the EDM contours as in (C, D, I, J), which clearly resemble the opposite FTLE fields. Multimedia views: https://doi.org/10.1063/5.0064023.1;
https://doi.org/10.1063/5.0064023.2; https://doi.org/10.1063/5.0064023.3; https://doi.org/10.1063/5.0064023.4
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shown in Fig. 3. The similarity between the forward EDM and FTLE
fields is also sustained; however, the EDM reveals a relatively long ver-
tical edge (indicated by the black arrow in Fig. 3), which has no trace
in the FTLE field.

To notice the temporal evolution of forward and backward EDM
maps, the reader can see videos 1 and 2 for the AAA flow, while videos
3 and 4 show the same maps for the LV flow (Fig. 3, Multimedia
views).

As all computational parameters are similar between the DM and
the FTLE field, we quantify the computational time per time interval
for each case. The computations are performed on a computer with an
Intel Core i7–6700 processor running at 3.4GHz using 32.0 GB of
RAM running on Windows 10 64-bit operating system. We observe
that the LD approach significantly decreases the computational time
by at least five times as reported in Table I.

In this study, we apply the Lagrangian descriptors approach to
cardiovascular flows. For this purpose, we used two in vitro cardiovas-
cular flows rich in complex flow structures—those in an AAA and in a
healthy LV. As the Lagrangian descriptors rely on the integration of a
geometrical or physical property along a given set of Lagrangian trajec-
tories,28 here, we select the arc length of the trajectories to indicate the
Lagrangian descriptors’ value for a given finite time interval.

By comparing the application of the LD approach to cardiovascu-
lar and oceanographic flows, a major difference is noted in the selec-
tion for the value of the time interval s. For instance, Mendoza and
Mancho26 used a single finite time interval for both forward and back-
ward computations of DM in their analysis of the Kuroshio currents.
For cardiovascular flow, in order to capture the attracting and repel-
ling LCS, we had to split the DM expression into DMF and DMB,
each being computed with a corresponding finite time interval sF and
sB.

The need to use different time intervals can be related to the
dynamics of the flow. For instance, Mancho et al.28 reported that
shorter values of s successfully capture structures with large repelling/
attracting nature. In this study, a similar conclusion can be drawn by
inspecting the LV case. As the initial release time of the Lagrangian
trajectories is shortly after the rapid filling, the mitral flow rapidly
accelerates into the LV. To computeDMB, trajectories are traced back-
ward in time where for longer sB, one can expect that trajectories
closer to the mitral valve will rapidly escape the flow domain. At such
conditions, the DM map is reported to perturb the identified struc-
tures.36 The reader can see a comparison between the backward FTLE
and DM fields using incrementally increasing values of sB in the sup-
plementary material. Recently, Garc�ıa-Garrido36 suggested calculating
the DM function along the trajectory until reaching the desired time
interval s or the trajectory escapes the domain. He called this approach
Variable Iteration Number of Discrete Lagrangian Descriptors or

VIN-DLD. Applying the VIN-DLD approach to obtain the backward
DM field, in the LV flow, has not revealed additional structures.

As the sharp gradients in DM contours indicate the locations of
attracting and repelling LCS, finding the gradient of DM (i.e.,
jjrDMjj) can accurately locate the LCS. To do so, we applied the
Sobel filter to detect locations with sharp gradient of the DM field,
which follows the suggestions in Ref. 31. Notably, the identified edges
match to a greater extent the distribution of the FTLE ridges.

Since the major advantage of using the LD approach is its com-
putational cost, we find it to be at least five times faster than the geo-
metric approach (using the FTLE).

In conclusion, using two examples, we have illustrated the appli-
cability of the Lagrangian descriptor approach to deduce LCSs in car-
diovascular flows. This approach can be significantly faster than the
other common LCS extraction approach (using the FTLE). By intro-
ducing such an approach to cardiovascular flows, clinical extraction of
LCSs can be done rapidly with reasonable computational resources.
Then, such an application can be implemented directly on cardiovas-
cular flows being acquired clinically via 4D MRI or echo-PIV.
Moreover, in real blood flows, the existing blood components can alter
the distribution of the deduced structures; therefore, using clinically
acquired velocity fields will ensure the accuracy of the extracted struc-
tures. Finally, performing further in vivo studies is required to promote
using Lagrangian descriptors to extract LCS in clinical practice.

SUPPLEMENTARY MATERIAL

See the supplementary material for further discussion on the
effect of the value of s on the resulting DMmaps.
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