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A B S T R A C T

Objective: To elucidate the possible outcome of mesenchymal stem cells extracted from the bone marrow (BM- 
MSCs) on the altered histological structure of the parotid gland of male rats with induced hypothyroidism.
Design: 24 adult male Wistar rats were used. The rats were divided into 3 groups, each containing 8 animals. The 
control group contained the sham-operated animals. The hypothyroid rat group (HT group) contained animals 
receiving carbimazole at a dose of 20 mg/kg per day up to 6 weeks to induce hypothyroidism. The third group 
contained rats with induced hypothyroidism and were administered BM-MSCs via the tail vein (HT-MSC) group. 
BM-MSCs were extracted from 3-week-old rats and were immunophenotyped prior to injection to the HT-MSC 
group. The parotid glands were dissected 6 weeks post injection and processed to assess PKH67-labelled cells, 
histomorphometry and staining with Haematoxylin and Eosin (H and E).
Results: Rats with induced hypothyroidism depicted a significant decrease in the thyroid hormoneś serum levels. 
Extracted BM-MSCs were CD105 + , CD90 + and CD45-. The parotid gland of HT group depicted an abnormal 
structure of the acini, intercalated, striated and excretory ducts including nuclear alterations, vacuolization and 
indistinct boundaries compared to their controls. In addition, the area and perimeter of the acini were dimin
ished. The HT-MSCs group depicted green PKH67+-labelled MSCs, restoration of the normal acinar and ductal 
configuration, and regular area and perimeter of the acini.
Conclusion: Transplanted BM-MSCs resumed the normal parotid gland acinar, intercalated, striated and excretory 
duct structure in the hypothyroid male rats, suggesting restored tissue function.

1. Introduction

Salivary glands are essential for secreting saliva that is pivotal for 
speaking, eating, swallowing, and digesting food (Ghannam & Singh, 
2022). The parotid gland is the largest paired salivary gland and its 
parenchymal components are divided into lobes and lobules by the 
connective tissue septa. The parenchymal portion includes the duct 

system and secretory serous acini. The intralobular ducts include the 
intercalated and striated, the latter evacuates into a larger interlobular 
excretory duct (Nanci, 2018).

The thyroid gland secretes thyroid hormones that are virtually crit
ical in the growth and maintenance of all the body organs and tissues. 
The thyroid hormones are essential for normal cell growth, proper cell 
differentiation, development (Hofstee et al., 2019), regulation of the 
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metabolic rate and protein synthesis (Al-Suhaimi & Khan, 2022; 
Schneider et al., 2023). One of the most common thyroid disorders is 
hypothyroidism which is caused by a decrease in the production of 
thyroid hormones resulting from damage, removal, or functional inhi
bition of the thyroid gland (Bordbar et al., 2024). In addition, it can be a 
consequence of complications from the treatment of hyperthyroidism by 
carbimazole (Reyad et al., 2021). Oral symptoms of hypothyroidism 
may include tongue swelling, increased vulnerability to dental cavities, 
enlarged salivary glands (Mostafa, 2022), and hyposalivation (Hashem 
& Saad, 2019). Abnormal parotid and submandibular gland architecture 
and function were observed in the hypothyroid rats (Hayat et al., 2010, 
2016; Ayuob, 2016; Elazeem et al., 2016; Nasr El-Din & Abdel Fattah, 
2020; Alhahawachee et al., 2022; Pimentel et al., 2022; Uzun et al., 
2022). Therefore, thyroid hormones are essential for preserving the 
histology and function of the salivary glands in a normal manner 
(Alhahawachee et al., 2022).

Impaired salivary gland function leads to a lower quality of the pa
tient’s life due to halitosis, persistent burning sensation, altered taste 
perception and difficulties in swallowing, speaking, and eating (Ito 
et al., 2023). The effectiveness of various treatment methods for hypo
salivation is debatable (Quimby et al., 2020). Artificial lubricants pro
vide only momentary relief (Nam et al., 2023); therefore, alternative 
therapeutic methods are needed, and regenerative medicine is an 
attractive approach to regenerate salivary tissue structure and function.

Stem cells attracted the interest of many scientists in recent years 
(Muallah et al., 2023). Mesenchymal stem cells (MSCs) were extracted 
from adipose tissue, hair follicles, cornea, dental pulp, peripheral blood, 
and bone marrow (Jammes et al., 2025). MSCs are capable of homing to 
the inflammatory sites during tissue injury and can characterize into 
multiple cell identities such as fat cells, muscle, cartilage, connective 
tissue, and bone. In addition, they increase angiogenesis and secrete 
various bioactive molecules that promote the healing of the injured cells 
(Han et al., 2022; Yang et al., 2023). MSCs extracted from the bone 
marrow (BM-MSCs) are among the first identified MSCs and are 
commonly used in clinical trials. Transplanted BM-MSCs restored the 
normal structure of different organs of various conditions including the 
tongue of diabetic rats (Radwan et al., 2024) and of the hypothyroid 
animals (Mahmoud et al., 2024), parotid glands of diabetic animal 
model (Denewar & Amin, 2020), submandibular glands of rats with 
ovariectomy (El-Badawy et al., 2024) and of hypothyroid rats (El dah
rawy et al., 2021), submandibular gland degenerative changes induced 
by cisplatin (Zakaria et al., 2025), and recently in preserving the ultra
structure of the organ of Corti in animal model with induced loss of 
hearing (Abdelwahed et al., 2025).

Several types of stem cell have been employed in the treatment of 
degenerative changes in the parotid gland of various conditions 
including gingival-derived mesenchymal stem cells in irradiated parotid 
glands (Zayed et al., 2024), umbilical cord blood mesenchymal stem 
cells in glands of ovariectomized animals (El-naseery et al., 2018), ad
ipose tissue-derived stem cells in irradiated parotid (Wang et al., 2017), 
dental pulp stem cells in diabetic rat glands (Al-Serwi et al., 2021).

Although the impact of transplanted MSCs of adipose tissue, umbil
ical cord, dental pulp and gingival origins on the altered architecture of 
the parotid gland of rats with induced hypothyroidism has been eluci
dated (Wang et al., 2017; El-naseery et al., 2018; Al-Serwi et al., 2021; 
Zayed et al., 2024), there is deficiency in studies evaluating the potential 
therapeutic use of BM-MSCs in the abnormal parotid gland structure of 
hypothyroid rats. In the present work, we hypothesized that trans
planted BM-MSCs impact the architectural alterations of the parotid 
gland of hypothyroid male rats. We, therefore, evaluated the possible 
outcome of transplanted BM-MSCs on parotid gland histological changes 
in hypothyroid male rats.

2. Materials and methods

The Faculty of Dentistrýs Research Ethics Committee, at Minia 

University approved all the animal experimental procedures (Code: 
RHDIRB2017122001, Decision No. 590). The experimental work com
plies with the national and ARRIVE guidelines as well as Guide to the 
Care and Use of Laboratory Animals by National Research Council 
(Council, 2011; Percie du Sert et al., 2020).

2.1. Isolation and characterization of the BM-MSCs

Isolation of the MSCs and their immunophenotyping were done as 
described in the previous work (El-Badawy et al., 2024; Mahmoud et al., 
2024), followed by their injection to the HT-MSC group. The MSCs were 
extracted from the hind limbs of two male rats of three-week-old. After 
disinfection and incision of the skin, the excision of the hind limb was 
performed with sterilized scissor and all the muscles and ligaments were 
carefully dissected. The heads of the hind limb bone was removed. Three 
ml of Low-Glucose DMEM (Invitrogen Life Technologies, Gibco, Carls
bad, CA, USA), Amphotericin B (25 g), 1 % penicillin G sodium (10.000 
UI), streptomycin (10 mg), 10 % FBS exosome-free (Gibco, Thermo 
Scientific, Germany) were utilized to completely flush the medulla. A 
sterile syringe supplemented with needle (18-gauge), was utilized to 
suck and dispense the medium and the cells to get single cell suspension. 
This was followed by 10 min centrifugation at 2000 rpm, at 4 ◦C. The 
obtained pellet was resuspended in culture media after discarding the 
floating aspirate (El-Badawy et al., 2024; Mahmoud et al., 2024).

The T-25 ml culture flask containing 100,000 cells in the bone 
marrow suspensions was incubated in 5 % CO2, at 37 ◦C in the air. A 
series of PBS washes and subsequent media changes were performed to 
get rid of the non-adherent cells, after two days (Thermo Fisher Scien
tific Inc., Waltham, MA, USA). Thereafter, the cells were incubated at 
37◦C, with twice media changes per week. After 14 days, the cells were 
harvested utilizing (0.01 % EDTA+ 0.25 % trypsin) after 70 % cell 
confluence and were plated at a cell density of 1 × 106 per flask. A 
hemocytometer was utilized for determination of the cell count. The 
fourth passage’s cells were utilized for the subsequent assessment 
(El-Badawy et al., 2024; Mahmoud et al., 2024).

The stem cells were identified by their spindle shape and adherence. 
In addition, multiparametric characterization utilizing flowcytometry 
was performed using the following antibodies: anti CD45-PC5, anti 
CD105-FITC, and anti CD90-FITC (Thermo Fisher Scientific, USA), to 
confirm the MSC identity. The cell count was adjusted to 106/ml. After 
suspending the cells in PBS, centrifugation was performed at 800 xg for 
10 min. The pellet was washed in PBS twice, after discarding the aspi
rate. 5 μL of each antibody was utilized and two antibodies were added 
per tube (CD45/CD90, CD45/CD105), to reduce the autofluorescence. 
After 45 min of incubation at 4◦C and washing the cells, the binding 
buffer was added. The flow cytometric results were analyzed utilizing 
Navios software (Beckman Coulter) (Heidari et al., 2021; Fathi & Far
ahzadi, 2022; El-Badawy et al., 2024).

2.2. The BM-MSC labelling by PKH67

To trace the isolated BM-MSCs, the PKH67 Green Fluorescent Cell 
Linker Mini Kit (MINI67–1KT, Sigma Aldrich, Saint Louis, USA) was 
utilized in labelling the MSCs. A staining mix was prepared of 1:1 of 
DMEM serum-free (Gibco, ThermoFisher, USA) and diluted dye solution, 
for each 1 × 106 cell culture. Then, the cells were incubated in 5 % CO2 
at 37◦C for an hour, followed by removal of the staining mix to stop the 
staining process. Thereafter, the cells were incubated in a growth me
dium. After injection of the labelled BM-MSCs to the rats of the HT-MSC 
group, the dissected and processed parotid salivary glands were 
sectioned into 5-um thick sections. Under fluorescence microscope, the 
presence of the PKH67-labeled cells was assessed in these unstained 5- 
um sections (Labomed, Los-Anglos, USA) (El-Badawy et al., 2024; 
Mahmoud et al., 2024).
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2.3. Experimental animalś grouping and hypothyroidism induction

24 healthy male adult Wister rats weighing 200– 250 g were kept at 
the animal facility at Assiut University, in controlled conditions of 
temperature (25 ± 1◦C), humidity (30–35 %), and adequate ventilation. 
The rats were supplied with standard laboratory diet, food, and water ad 
libitum (El-Badawy et al., 2024).

Carbimazole was utilized for hypothyroidism induction. The medi
cine was provided in soluble tablet form (Chemical Industries Devel
opment, Giza, and A.R.E.), containing 5 mg of methimazole. To induce 
hypothyroidism, the animals were given 20 mg/kg of body weight per 
day of the drug after being dissolved in 12 ml of distilled water (Ajayi 
et al., 2018), by intragastric tube for 6 weeks (Mahmoud et al., 2024).

After one week of acclimatization, the animals were randomly 
distributed into 3 groups, with 8 animals for each. The control group 
contained animals administered 3 ml of distilled water orally by intra
gastric tube for six weeks to imitate the stress of the given drug. 
Thereafter, an IV injection at the lateral tail vein of 1 ml of cell-free 
media was performed. The hypothyroid rat group (HT group) con
tained hypothyroid rats receiving carbimazole for 6 weeks and there
after received 1 ml of cell-free media. HT-MSC group included 
hypothyroid animals administered 1 ml of the culture media containing 
1 × 106 of BM-MSCs (Mohsen et al., 2019). The animals were euthanized 
6 weeks after the stem cells injection (Mahmoud et al., 2024).

To confirm hypothyroidism induction, the thyroid hormone levels 
were evaluated. Serum thyroxine and triiodothyronine were assessed six 
weeks after administration of carbimazole (Mahmoud et al., 2024). The 
blood specimens were stored for an hour at room temperature and 
centrifuged for 15 min at 3000 rpm. The extracted serum was kept at 
− 20◦C to be utilized for ELISA kit; Rat Thyroxine and Rat Triiodothy
ronine (Mybiosource, California, United States) (Ramadan Samaha, 
2016).

2.4. Euthanasia, sample preparation and H and E staining

For euthanasia, the rats administered pentobarbital sodium 
(Nembutal, Akron, Illinois, USA) at a dose (120 mg/ kg) (Abdel Fattah & 
Omar, 2023). The heads were cervically dislocated, and the paired pa
rotid glands were dissected. The glands were washed in PBS and pre
served for 48 h in neutral buffered formalin (10 %) (El-Badawy et al., 
2024).

The samples were rinsed in cold PBS followed by dehydration in 
ethanol, clearing in xylene and infiltration by paraffin as described 
previously (El-Badawy et al., 2024). The wax blocks were cut to 6 
µm-thick sections and stretched over glass slides (StarFrost, Knittelglass, 
Germany). To assess the Parotid gland histology, the tissue sections were 
prepared for staining with H and E. First, parotid gland tissues were 
deparaffinized in 3 baths of xylene (5 min each), followed by rehydra
tion in ethanol 99.5 %, 95 % and 70 % (3 baths each, 5 min each bath). 
Then, the sections were washed in distilled water and stained with H and 
E. At the end, the parotid gland sections were rinsed in tap water, 
dehydrated, xylene immersed, mounted, cover slipped (DPX EXTRA 
PURE, Alpha Chemika, India) and assessed under light microscope (DM 
LB100T, LEICA) (Cardiff et al., 2014; El-Badawy et al., 2024).

2.5. Acinar area and perimeter histomorphometry

The area and perimeter of the acini in the 3 studied groups were 
assessed utilizing Image J 22 Software (NIH, USA, version 1.48 v). For 
each group (n = 8), five non-overlapping fields were utilized for each 
sample at 200x magnification (Kurup et al., 2015).

2.6. Statistics

Statistical analysis of the serum thyroid hormones parameters in 
control and hypothyroid rats and the area and the perimeter of the acini 

of the 3 rat groups were performed utilizing non-parametric tests. Mann 
Whitney test was utilized to analyze the levels of thyroid hormones. The 
Kruskal Wallis test and thereafter the Post-hoc test (Dunn’s for multiple 
comparison test) were utilized to analyse the acinar perimeter and area. 
The p ≤ 0.05 was utilized as cut off value of significance. For statistical 
analysis, IBM SPSS software version 20.0 was utilized (Armonk, New 
York, IBM Corp.).

3. Results

3.1. Reduced levels of thyroid hormones in rats with induced 
hypothyroidism

The serum levels of thyroxine and triiodothyronine were analysed, 
and the data revealed that the hypothyroid rats had significantly lower 
serum hormones levels than their controls (5.93 ± 0.47, 91.53 ± 5.14, 
p < 0.001) (Figs. 2A, 2B), (Table 1).

3.2. Characterization and detection of the isolated MSCs

Multiparametric analysis revealed that most of the isolated cells were 
immuno-positive for CD105 and CD90 and co-expressed CD45 (Fig. 1A), 
depicting pure extraction of MSCs from the bone marrow. Parotid gland 
unstained tissues of the HT and control groups revealed negative 
staining with PKH67 (Figs. 1B, 1C); by contrast, the unstained parotid 
gland tissue sections from the HT-MSC group depicted PKH67 labelled 
BM-MSCs with green fluorescence (Fig. 1D).

3.3. Histological alterations of the parotid gland tissues of the hypothyroid 
rats and restoration of the normal gland histology in the HT-MSC treated 
rats

To assess whether BM-MSC transplantation could improve the 
abnormal histology of the parotid gland in the hypothyroid animals, the 
glands were studied after being stained with H and E. In the control 
animals, the serous acini were spherical in shape, closely packed and the 
acini were composed of a single layer of pyramidal cells with basophilic 
cytoplasm. The acini had a broad base and a narrow apex with basal, 
spherical nucleus and were separated by inter-acinar connective tissue 
(Fig. 2C). Among the acini, the intercalated ducts were lined with a 
single layer of cuboidal epithelial cells with central large, rounded 
nuclei and eosinophilic cytoplasm (Fig. 3A). The striated ducts revealed 
epithelial lining formed of columnar cells containing rounded nuclei in 
the center and possessed pale eosinophilic cytoplasm (Fig. 3D). The 
excretory interlobular ducts were encircled by fibrous connective tissue 
and were lined by columnar epithelium and had wide lumen. Addi
tionally, blood vessels were visible in the connective tissue septa 
(Fig. 4A).

In the hypothyroid group, serous acini revealed an apparent smaller 
size with an irregular outline. The acinar cell nuclei displayed nuclear 

Table 1 
Comparison between the two studied groups according to Triiodothyronine and 
Thyroxine.

Control rats 
(n ¼ 8)

Hypothyroid 
rats (n ¼ 16)

U ( Mann 
Whitney 
test)

p-value

Triiodothyronine 
(ng/dl)

​ ​ ​

Min. – Max. 127.0–139.5 83.70–100.4 0.00* < 0.001*
Median 

(interquartile 
range (IQR))

130.5 
(128.4–134.5)

91.92 
(87.6–95.5)

Thyroxine (µg/dl) ​ ​ ​
Min. – Max. 8.34–9.40 5.22–6.70 0.00 < 0.001*
Median (IQR) 9.02(8.8–9.3) 5.99(5.5–6.2)

* Statistically significant at p ≤ 0.05
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alterations with some being pyknotic, pleomorphic or hyperchromatic. 
Different-sized cytoplasmic vacuoles were detected in the acinar cyto
plasm (Fig. 2D). The intercalated ducts depicted indistinct borders along 
with abnormal nuclear configuration (Fig. 3B). The striated ducts 
revealed abnormal epithelium lining and nuclear morphology. The 
cytoplasm depicted vacuolization with apparent loss of the ductal basal 
striations (Fig. 3E). The epithelial lining of excretory ducts was atro
phied with areas of discontinuity in the lining. The nuclei revealed 
abnormal configuration, and the cytoplasm depicted vacuolization. 
Moreover, the interlobular connective tissue showed an apparent in
crease in collagen fibers with dilated and congested blood vessels. In
flammatory cell infiltration was also detected (Fig. 4B).

In the HT-MSCs group, and in comparison to the HT group, most of 
the serous acini restored their normal architecture formed of pyramidal 
cells with well-defined borders, basal nuclei, and basophilic cytoplasm 
(Fig. 2E). The intercalated ducts depicted normal histological structure 
with cuboidal cell lining, and large, rounded nuclei in the center 
(Fig. 3C). The striated ducts revealed normal histology and were lined by 
columnar cells with evident basal striations (Fig. 3F). The interlobular 
excretory ducts revealed a continuous epithelial lining formed of 
columnar cells with euchromatic nuclei. The interlobular ducts were 
encircled by an apparent thin connective tissue layer (Fig. 4C).

3.4. Aberrant decrease in the area and perimeter of the acini of the 
hypothyroid rats and their restoration in the stem-cell-treated hypothyroid 
animals

In comparison to the controls, the acini of the HT group depicted a 
decrease in the acinar perimeter (670.9 ± 53.70, p < 0.001) and area 
(97.48 ± 4.15, p < 0.001) indicating atrophy. In the HT-MSCs group, 
the acinar size was restored in perimeter (1478.5 ± 29.19, p = 0.008), 
and area (148.5 ± 2.59, p = 0.002) compared to the HT group.

The perimeter and area of the serous acini of the HT-MSC group were 
insignificantly different from that of their controls (1512.9 ± 26.73, 
p = 0.138) and (149.2 ± 1.63, p = 0.480), respectively (Figs. 4D, 4E), 

(Table 2).

4. Discussion

In the present work, we evaluated the impact of the BM-MSC infusion 
in ameliorating the structural alterations of the parotid gland in hypo
thyroid male rats, utilizing experimental animal model. Hypothyroidism 
is a common thyroid disorder, which is characterized by decreased 
production of thyroid hormones (Cakic-Milosevic et al., 2004; 
Cano-Europa et al., 2011), and imbalance in thyroid hormones leads to 
pathological alterations in the salivary glands (Hayat et al., 2010, 2016; 
Nasr El-Din & Abdel Fattah, 2020). In our experimental model, carbi
mazole was utilized to induce hypothyroidism. To confirm the induction 
of hypothyroidism in rats treated with carbimazole, the serum level of 
the thyroid hormones was assessed. Our results revealed low serum 
levels of thyroid hormones in the animals treated with carbimazole or its 
active form, methimazole. Our findings are in agreement with the results 
of the earlier work of (Elazeem et al., 2016; Hayat et al., 2016; Arafa 
et al., 2018; Nasr El-Din & Abdel Fattah, 2020; El dahrawy et al., 2021; 
Mahmoud et al., 2024). It has been reported that the drug blocks the 
tyrosine residue iodination by acting as a false substrate to the thyroid 
peroxidase leading to low levels of thyroxine and triiodothyronine 
(Cakic-Milosevic et al., 2004; Sakr et al., 2016).

The parotid gland was chosen as more than half of the total volume of 
salivary secretion is produced by the parotid gland, making it the most 
significant in terms of salivary production during stimulated salivary 
flow (Estafanos, 2020). The systemic way of administration of BM-MSCs 
was utilized since it is the least invasive method, easy-to-repeat in
fusions, and the cells remain close to the nutrient and oxygen-rich 
vasculature once they have extravasated into the target tissue (Yan 
et al., 2021; Upadhyay & Tran, 2023).

In the current work, the parotid gland of rats with induced hypo
thyroidism revealed deterioration of gland architecture. The serous acini 
were atrophied, with an indistinct outline. In addition, the duct system 
showed abnormal histology. Our data confirms the findings of the 

Fig. 1. Mesenchymal stem cells isolated from the bone marrow (BM-MSCs) immunophenotyping and labelling in control and hypothyroid rats. A dot blot repre
senting flow cytometric immunophenotyping of the BM-MSCs of three-week-old rats and showing CD90, CD105 immuno-positive and CD45 immuno-negative cells, 
depicting pure extraction of BM-MSCs. Photomicrographs of parotid gland tissues of control male rat (B), hypothyroid rat (C) depicting negative PKH67 labelling and 
of BM-MSCs treated rats (D) showing green fluorescent-labelled BM-MSCs (white arrows) (PKH67, (B-D), Magnification x100).
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previous studies on parotid gland of hypothyroid rats (Hayat et al., 
2010; Ayuob, 2016; Elazeem et al., 2016; Nasr El-Din & Abdel Fattah, 
2020; Uzun et al., 2022). These deleterious alterations could be due to 
the critical function of thyroid hormones regulating oxidative meta
bolism and producing free radicals (Macvanin et al., 2023). In hypo
thyroidism, functional changes in thyroid gland impact the body’s 
capacity to generate reactive oxygen species and escalate oxidative 
stress (Chakrabarti et al., 2016; Algaidi et al., 2022), and they initiate a 
chain reaction that damages the cell membrane lipids and other com
ponents of the cell through oxidative damage (Chakrabarti et al., 2016; 
Pizzino et al., 2017). Furthermore, individuals with hypothyroidism 
have impaired antioxidant defence mechanisms across various struc
tures (Kandasamy et al., 2021).

In this work, the nuclei of the parotid acini and of the duct system 
depicted abnormal morphology including nuclear pyknosis and hyper
chromatism. Similar results were demonstrated in previous studies 
(Hayat et al., 2010; Ayuob, 2016; Elazeem et al., 2016; Uzun et al., 
2022). It has been reported that cellular metabolic activity is associated 
with large euchromatic nuclei (Björk & Wieslander, 2014) and high 
percentage of heterochromatin is indicative of low metabolic activity of 
the cells (Ashour, 1998). Taken together, these data suggest low meta
bolic activity and impaired function in the parotid gland of hypothyroid 
rats.

Furthermore, in the current work, the hypothyroid rats displayed 
vacuolization in the acinar and ductal cytoplasm. This is consistent with 

earlier research on parotid glands of hypothyroid animals (Hayat et al., 
2010; Elazeem et al., 2016; Nasr El-Din & Abdel Fattah, 2020). These 
vacuoles may be autophagic or lipid-filled vacuoles. Lipid accumulation 
has been linked to a decrease in the synthesis of secretory granules 
(Yashida et al., 2011). It has been reported that extreme vacuolization 
may cause apoptosis or cell death (Henics & Wheatley, 1999).

In the present work, parotid acini of the hypothyroid group were 
atrophied and had decreased size and perimeter compared to the con
trols. Similar to our findings, atrophic alterations in the serous acini of 
parotid gland of rats with induced hypothyroidism were reported (Hayat 
et al., 2010; Ayuob, 2016; Elazeem et al., 2016; Uzun et al., 2022). It has 
been suggested that acinar atrophy in the parotid gland and also in the 
submandibular gland of methimazole-induced hypothyroidism in rats 
may be due to diminished function of the parotid gland (Hayat et al., 
2010) and submandibular gland (Hayat et al., 2016).

In this study, the parotid gland of rats with hypothyroidism depicted 
an apparent increase in the collagen fiber layer encircling the interlob
ular ducts, with inflammatory cellular infiltrate. Our findings are in 
agreement with the earlier results of Elazeem et al., (2016). It has been 
reported that in the injured tissues, the extracellular matrix is recon
structed and the inflammatory factors are released followed by the 
formation of extracellular matrix components including collagen 
(Kramann et al., 2013; Qin et al., 2023). It has been reported that 
transplanted MSCs have protective effect against fibrotic disorders by 
their ability to modify the fibrotic environment and the injured cells by 

Fig. 2. Transplanted mesenchymal stem cells isolated from the bone marrow (BM-MSCs) restored the normal histology of the parotid gland acini of the hypothyroid 
rats. (A, B) Graph showing a comparison between the control, hypothyroid rats according to serum values of the Triiodothyronine (A) and Thyroxine (B). The 
hypothyroid animals depicted significantly lower serum levels of triiodothyronine p < 0.001, and decreased thyroxine serum level p < 0.001 compared to their 
controls. Photomicrographs of the parotid salivary gland of control rat (C) showing normal parotid tissue with normal serous acini (S) exhibiting basal rounded nuclei 
(white arrow); hypothyroid rat group (D) showing distorted architecture of the acini, some serous acini appear atrophied (S) with indistinct outlines (double arrow), 
apparently wide inter-acinar spaces (white arrows), some acinar nuclei are pyknotic (white arrowheads) or hyperchromatic (N) and cytoplasmic vacuolization of the 
acinar cells (black arrows) and hypothyroid rat group receiving BM-MSC injection (E) showing that most of acini restored their normal histology (S) with apparent 
decrease in the inter-acinar spaces (black arrows). H and E, magnification x400 (C, D, E).
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both indirect and direct effect (Qin et al., 2023).
There is no effective pharmacological therapy or palliative care for 

hyposalivation induced by structural salivary gland alterations. Saliva 
substitutes and oral lubricants have inconsistent ability to relieve 
symptoms of hyposalivation and are short lived. In addition, saliva 
stimulantś effect is depending on the residual gland function and is of 
limited effect in cases of severe glandular hypofunction (Chibly et al., 
2022). Cell based therapy which utilized isolated living cells to resume 
the gland structure and function have developed large step forward in 
treating salivary gland dysfunction (Chibly et al., 2022). The BM-MSCs 
are the most commonly used MSCs, easy to extract and culture and 
feasible for allogenic and autologous cell-based therapy 
(Musiał-Wysocka et al., 2019). In the present work, hypothyroid animals 
infused with the BM-MSCs displayed restoration of the normal archi
tecture of the acini and ducts with distinct borders, normal nuclear 
histology and near absence of the acinar and ductal vacuolization. 
Various in vivo studies reported the regenerative capacity of MSCs 
derived from the bone marrow in several organs, including the parotid 
gland. Transplanted BM-MSCs regenerate the structural alterations in 
pancreas of hypothyroid rats (Arafa et al., 2018); in the injured tissues of 
the parotid salivary glands in rats with ovariectomy (Abd El-Haleem 
et al., 2018) and also in rats with streptozotocin-induced diabetes 
(Denewar & Amin, 2020), in parotid gland changes of cisplatin-treated 
rats (Abdelaziz et al., 2023), the cytotoxic alterations induced by 
cisplatin in the submandibular gland (Zakaria et al., 2025), histopath
ological changes of the submandibular gland of ovariectomized rats 
(El-Badawy et al., 2024) and in the structural alterations of the tongue of 
rats with induced hypothyroidism (Mahmoud et al., 2024). This repar
ative effect of the transplanted stem cells could be attributed to the large 
amounts of cytokines, growth factors, and chemokines released from 
these cells, including transforming growth factor-beta, interleukin 6, 10, 
and vascular endothelial growth factor which facilitates their migration 
and proliferation, immunosuppressive effects, and regulation of 

angiogenesis and apoptosis (Augello et al., 2010; Gebler et al., 2012; 
Han et al., 2022). Furthermore, MSCs can integrate into tissues and 
characterize to various identities of cells (Afshari et al., 2020).

Canonical Wnt transduction cascade is crucial in tissue regeneration 
and adult stem cell maintenance. Different components of the cascade 
are detected in the adult salivary glands of human and mice (Hoffman 
et al., 2002; Sun et al., 2008). In adult mouse, canonical Wnt signaling is 
active in the duct system and is increased during the regeneration of the 
injured salivary gland. In addition, hedgehog signaling was also 
increased (Hai et al., 2010). It has been reported that activation of ca
nonical Wnt transduction cascade can alleviate hyposalivation by 
maintaining the stem/progenitor cells and inhibiting apoptosis 
(Goessling et al., 2008). Various signaling pathways are involved in the 
salivary gland development including retinoic acid (Lohnes et al., 1994), 
FGF signaling (Steinberg et al., 2005), and notch signaling 
(García-Gallastegui et al., 2014). Future research is needed to discern 
whether the role of BM-MSCs in alleviating parotid gland abnormalities 
in hypothyroid rats is operated by any of the above mentioned signaling 
cascades.

The limitation of this study was the lack of evaluation of the func
tional changes and of the molecular alterations in the parotid gland of 
hypothyroid rats that require further studies. Future studies are in need 
to evaluate the possible ameliorative impact of BM-MSC therapy on the 
altered histology of parotid glands in hypothyroid patients who suffer 
from impaired salivary function consequences.

5. Conclusion

Hypothyroidism induction in male rats resulted in histological al
terations in the parotid gland. The glandular tissues depicted apparently 
acinar atrophy with decreased area and perimeter, nuclear changes and 
cytoplasmic vacuolization. The duct system depicted distorted epithelial 
wall lining of the excretory, striated and intercalated ducts. BM-MSC 

Fig. 3. Infused mesenchymal stem cells isolated from the bone marrow (BM-MSCs) recovered the altered histology in intercalated and striated ducts in the hypo
thyroid rats. Photomicrographs of intercalated ducts of the parotid salivary gland of control group (A) depicting normal histology with cuboidal cells with central 
rounded nuclei and eosinophilic cytoplasm (black arrows); hypothyroid rat group (HT group)(B) showing intercalated duct with ill-defined borders and abnormal 
configurations (black arrowhead) and the hypothyroid rat group receiving BM-MSC injection (HT-MSC group) (C) showing restoration of the normal cellular ar
chitecture of the ductal epithelium (black arrow). Representative images of the striated duct (Sd) depicting central nuclei in the control group (D) (black arrows); Sd 
of the HT group (E) depicting abnormal nuclear morphology, loss of basal striations (black arrowhead) and vacuolization of the cytoplasm (double arrow) and Sd of 
the HT-MSC group (F) showing restoration of the normal cellular configuration of the ductal epithelium with restoration of the basal striations (black arrows). H and 
E, magnification x400 (A-F).
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transplantation regained the normal architecture, area and perimeter of 
the acini and ductal histology, thus ameliorating the degenerative effect 
of hypothyroidism on the parotid gland, suggesting restored function of 
the parotid tissues.

Funding

This research did not receive any specific grant from funding 
agencies in the public, commercial or not-for-profit sectors.

CRediT authorship contribution statement

Maha El Shahawy: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Supervision, Resources, Project admin
istration, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Mohamed Badawy: Writing – review & editing, 
Visualization, Validation, Supervision. Mary Moheb: Writing – review 
& editing, Visualization, Validation, Supervision. Hanan El-Hemedy: 
Writing – review & editing, Writing – original draft, Visualization, 
Validation, Resources, Methodology, Investigation, Funding acquisition, 

Fig. 4. Administration of the mesenchymal stem cells isolated from the bone marrow (BM-MSCs) rescued the abnormal histology of the excretory ducts in the 
hypothyroid rats. Photomicrographs of the interlobular excretory ducts (Ex) of the parotid salivary gland of control group (A) showing wide lumen and lined with 
columnar epithelium (black arrow) and surrounded by connective tissue fibers (double arrow), with patent blood vessels (black curved arrow); Ex of the hypothyroid 
rat group (HT group)(B) depicting loss of cellular arrangement with atrophied epithelium (black arrow), discontinuity at some areas (white arrow), the nuclei show 
hyperchromatic (asterisk) and pyknotic (black arrowhead) appearance and the duct is surrounded by an apparently thick connective tissue layer with dilated blood 
vessel (black curved arrow) and inflammatory cellular infiltrate (circle) seen within it; and Ex of the hypothyroid rat group receiving BM-MSC injection (HT-MSC 
group)(C) showing near restoration of the normal histology (black arrows), nuclear morphology (circle), and with apparently thin surrounding fibrous tissue (double 
arrow). (H and E, magnification x400 (A, B &C)). (D, E) Graphs showing comparison between the control, HT and HT-MSC groups according to the perimeter (D) and 
area (E) of acini. The hypothyroid rats showed significantly decreased acinar perimeter p < 0.001 and area p < 0.001 compared to the control animals. The HT-MSC 
group showed restoration of the acinar perimeter p = 0.008 and area p = 0.002 compared to the HT group. The HT-MSC group depicted insignificant differences in 
area p = 0.480 and perimeter p = 0.138, in comparison to the controls.

Table 2 
Comparison between the three studied groups according to acini perimeter and area.

Control (n ¼ 8) Hypothyroid (n ¼ 8) HT-MSC (n ¼ 8) H (Kruskal Wallis test) P-value

Perimeter of acini (µm) ​ ​ ​
Min. – Max. 1472.2 – 1543.9 607.2 – 747.1 1437.7 – 1525.3 17.565* < 0.001*
Median (interquartile range (IQR)) 1512.1a(1494.0 – 1537.4) 675.3b(621.7 – 709.6) 1473.7a(1458.6 – 1500.3)
Sig. bet. grps. p1< 0.001*,p2= 0.138,p3 = 0.008* ​ ​
Area of acini (µm2 ) ​ ​ ​
Min. – Max. 147.4 – 151.6 91.62 – 101.5 145.8 – 153.2 15.860* < 0.001*
Median (IQR) 148.9a) 147.8 – 150.8) 98.55b(93.6 – 101.3) 147.7a(146.4 – 150.2)
Sig. bet. grps. p1< 0.001*, p2= 0.480, p3 = 0.002* ​ ​

The p-value for comparison between the groups was as follows; p1 for comparing between Control and Hypothyroid groups, p2 for comparing between Control and 
HT-MSCs groups and p3 comparing between Hypothyroid and HT-MSCs groups. Medians with Small Common letters (a-b) are not significant (OR Medians with 
different letters (a-b) are significant).

* Statistically significant at p ≤ 0.05
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